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Development of practical alloy systems

] For many centuries, the conventional strategy for development of
practical alloy systems has been based mainly on one principal element
as the matrix, such as Fe-(steel), Cu—, Al-, Mg—, Ti—, Ni—, limiting the
number of applicable alloy systems. The vast majority of the currently-
used high-performance alloys had been developed by the 1970s, which is
regarded by many as the period when traditional alloys had reached their
maturity.

] Since this time, various routes have been taken to meet the continuous
demand for materials with enhanced properties for advanced
applications:

v" One approach has been to employ novel production routes, such as
thermomechanical treatments, rapid solidification, mechanical alloying,
spray forming, equal channel angular extrusion, high-strain-rate superplastic
forming, stir friction welding, nanoscale material production etc.

v" Another method has been to manipulate the composition of the alloys, as is
the case for the newly developed intermetallic compounds Ti-Al, Ni-Al, and
Fe-Al and their alloys, metal matrix composites, amorphous multicomponent
alloys prepared by melt spinning etc.

) However, as before the these new compounds typically based on one or,
at most, two major elements.




Development of multicomponent alloy systems

Multi-component alloying is widely used in the development of a variety of
materials exploited in extreme conditions (high temperatures and loads) in
particular, heat-resistant alloys of iron and nickel-based. In recent years, a
multi-component alloys originated additional interest associated with the
discovery of previously unexplored compositions of alloying elements and

foundations that are in equiatomic concentration (Cantor, B. and others, A.J.B.
Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213—-
218).

- Initially these new multi-principal-element alloys seemed very complex in
composition and microstructure, and difficult to analyze, which was
exacerbated by the lack of related literature. However, after previous
research, it was soon discovered that their synthesis, processing, and

analysis was feasible. (Yeh, J.wW.; and others. Nanostructured high-entropy alloys with multiple
principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299-303).

- The vast number of possible alloy combinations and the possibility of
tailoring the constituent elements to tune the final properties of the multi-
element alloys are the two major reasons for the increasing scientific
attention in this field. The number of possible alloys combinations is
further increased by the fact that the alloys may or may not be equimolar,

and other minor elements could be added to modify their properties.J. w.
Yeh. Recent progress in high-entropy alloys. European Journal of Control 31(6), 2006, pp.633-648).




The goal of the work

Up till now, more than 300 HEAs have been developed, forming a new frontier of metallic

materials.

1 Despite the growing interest in HEAs, most published works focus mainly on the
thermodynamic aspects of HEAs, the resulting microstructure and limited mechanical
properties.

] Less attention was paid to study processing route and developing new methods of HEA's
preparation. Although a formation of the homogenous metallic multi-component alloys is
complicated science and application task.

In this work, we for the first time attempted to fabricate cast HEAs by
SHS-metallurgy and find process parameters that would be favorable for
deposition of protective coatings of the HEAs in-situ SHS (SHS surfacing).

Background and motivation

1 Our many years positive experience in production of cast multicomponent
metallic materials in combustion mode (based on Co—, Ni —, Ti —and composites
based on them.

1 SHS-metallurgy (one of scientific direction into SHS) don’t require additional
energy, based on use relatively cheap materials (oxides) and can be regard as
method to obtain these HEAs with a cheaper, easier and faster way.




Synthesis of as cast HEAs by SHS metallurgy

J Overall chemical scheme of synthesis
(Ox, + Ox, + Ox, + ...0Ox_) + Al(Ti, Mg) = (Ni, Co, Ti, Fe, W, Cr, Al etc.) + R, O,

where Ox. is oxides of Ni, Co, Fe, Ti, W, Cr, V, Mo, Nb etc.,
AI(Ti, Mg) —reducing agent

) Maine stages of the SHS for as cast materials
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Common effect of high gravity on phase segregation of
final product during centrifugal casting —SHS process
and formation HEAs fine structure
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The compositions synthesized by centrifugal casting —SHS process

Nominal composition

(HEA-I) - NiCcrCoFeAl 23.3 206 233 221 107
(HEA-II) - NicrCoFeAlCu 18.6 16,5 186 177 8.5 20.1
------
(HEA III) NiCrCoFeMnAl,, 20.6 182 207 196 193
— NiCrCoFeMnAl, 19.9 176 200 189 186 5.0
— NiCrCoFeMnAl, , 19.0 173 191 181 178 8.7
— NiCrCoFeMnAl, , 18.7 165 188 178  17.5 10.7
— NiCrCoFeMnAl, ¢ 17.8 158 179 170  16.7 14.8
— NiCrCoFeMnAl, 16.9 150 17.0 160  15.8 19.3
e e -------
(HEA-IV) - NbTiMozrCrAl,Siy , 235 121 242 230 131
NbTiMoZrCrAl, ¢S 4 230 118 237 226 128 3.3 2.8
NbTiMoZrCrAl,sSi, 220 116 227 216 123 3.2 6.6
NbTiMoZrCrAl,sSi, 21.6 111 223 212 121 3.2 8.5
NbTiMoZrCrAl,sSi, ¢ 21.2 109 219 208 119 3.1 10.2
NbTiMoZrCrAl,sSi, 20.7 107 213 203 115 3.0 12.5
N N
(HEA- V) NbMoZrWHfTa 11,3 116 11,1 22,3 21,7
NbMoZrWHfTaCr, s 111 115 10,9 1,6 22,0 21,3 21,6
NbMoZrWHfTaCr 109 113 10,7 31 216 21,0 21,3
NbMoZrWHfTaCr,, ;s 108 11,1 106 45 213 20,7 21,0

NbMoZrWHfTaCr, , 106 110 104 59 21,0 20,4 20,7




Thermodynamic analysis of NiCrCoFeMnAl, alloy composition
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Density and micro hardness vs. Al content
In cast NiCrCoFeMnAl, HEA
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X-ray diffraction patterns of NiCrCoFeMnAl, HEA
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XRD and microstructure of cast NiICrCoFeMnAl, , HEA
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XRD and microstructure of cast NiCrCoFeMnAlj, g HEA
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XRD and microstructure of cast NiCrCoFeMnAl; g HEA
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ISMAN

XRD and microstructure of cast NiCrCoFeMnAl, o HEA
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Bimodal structure of cast NiCrCoFeMnAl, j HEA

After light etching (SEM
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Composition of NiCrCoFeMnAly HEA after etching

After strong echin (SEM)

NiCrCoFeMnAl, ¢

Spectrum Al Cr Mn Fe Co Total

1 1.1 48.7 113 314 7.5 100.0

! Electron Image 1

NiCrCoFeMnAl, g

Spectrum Al Cr Mn Fe Co Total

1 2.6 50.1 122 309 4.2 100.0

NiCrCoFeMnAl, ,

Spectrum Al Cr Mn Fe Co Total

1 28 528 106 30.2 3.6 100.0
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Nanoscale composite structure of synthesized NiCrCoFeMnAl, j HEA

Structural sketch
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Effect of temperature on phase stability for NiCrCoFeMnAl, ; HEA

Furnace HTK 2000 “Anton Paar” and diffractometer ARL*XTRA
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X-ray diffraction patterns of NiCrCoFeMnAl, HEA
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SHS surfacing of Tl pctrate
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SEM image and XRD date of NbMoZrWHfTaCr,. HEAs
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XRD date of NbMoZrWHfTaCry, HEAS
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Conclusion

It was shown great ability centrifugal SHS techniques to production of cast HEAs.
Synthesized alloys NiCrCoFeMnAl, with high Al (up to 15 wt. %) had unique
nano-sized composite structure which consist of NiAl as body phase and nano-
sized (rounded shape) precipitates formed of polymetallic solid solution
(FCC/BCCQC).

Analysis of obtained data leads to the conclusion about the promising use the
polymetallic alloys (HEAS) and production method (SHS) for formation of cast
bulk nano-structural materials.

The construction of new metallic materials based on the new concept (polymetallic
solid solution) can significantly broaden the base for creation of new advanced
materials and production of new items running under extreme conditions.

This work can be regarded as the first positive experience of SHS surfacing by cast
HEAs on Ti alloy substrate.

The present results can be expected to make engineering background for industrial-
scale manufacturing of new cost-effective process for fabricating HEAs with valued
properties and protective coatings based on them.

EPNM-2016, June 20 — 24, 2016, Coimbra, Portugal



Thank you for your attention !

The scientist - is not the one who gives the correct answer,
and the one who puts the right questions.

Claude Levi-Strauss
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