О МЕХАНИЗМЕ ФОРМИРОВАНИЯ ЛИТЫХ ОКСИНИТРИДОВ АЛЮМИНИЯ ПРИ ГОРЕНИИ СМЕСЕЙ ТЕРМИТНОГО ТИПА

В.И. Юхвид, С.Л. Силяков, В.А. Горшков, Т.И. Игнатьева

Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук, Черноголовка, Россия * yukh@ism.ac.ru

В системе Al-O-N установлено более 10 различных оксинитридов, Для их синтеза, в большинстве случаев, используют методы порошковой металлургии [1]. Известны и другие походы, в том числе методы, основанные на горении [2-5]. Наибольшее внимание было уделено получению порошка $Al_{23}O_{27}N_5$ (или Al_5O_6N), который получил название (ALON) используют для изготовления высокопрочной прозрачной керамики [1].

В работах 2017-2018 годов авторы провели исследования, направленные на изучение химического превращения исходной смеси в волне горения и механизма формирования литых оксинитридов алюминия [6,7]. Результаты этих исследований представлены на конференцию ИСМАН 2019.

Для получения литых оксинитридов алюминия, используя горение термитных смесей, были использованы 3 подхода: (1)- введение в состав продуктов горения азота из газовой среды, (2)-введение связанного азота (нитридов алюминия) или (3)-комбинацию (1) и (2). В качестве модельных термитных систем использовали Fe2O3+xAl и CrO₃+ xAl. Для 1-го подхода химическая схема получения оксинитридов имеет вид:

Fe2O3 + xAl + yN₂
$$\rightarrow$$
Al-O-N + Fe-Al
CrO₃ + xAl + yN₂ \rightarrow Al-O-N + Cr-Al, где x> 2

Для 2-го подхода химическая схема получения оксинитридов имеет вид:

(Fe2O3+xAl)+y AlN
$$\rightarrow$$
 Al-O-N + Fe-Al
(CrO₃+x Al)+y AlN \rightarrow Al-O-N +Cr-Al, где x> 2

Для получения расплава из AlN с Al2O3, используя смеси термитного типа, необходимо, чтобы температура их горения превышала температуру плавления Al2O3 (T=2300 K) и AlN (T=2450 K) [8]. Исходя из предложенных химических схем, формирование оксинитридов алюминия происходит при взаимодействии расплава Al2O3 с AlN, образующимся в волне горения или введенным в состав исходной смеси. Для

расслоения оксинитридной и металлической фаз после горения необходимо отличие их удельного веса и достаточного времени для гравитационной сепарации.

Методика проведения экспериментов и анализа продуктов горения.

Для синтеза литых оксинитридов алюминия в качестве компонентов исходной смеси использовали порошки оксида железа (III) марки «ч», алюминий марки АСД-1, технический азот, нитрид алюминия (96%), полученный в режиме СВС.

Исходные смеси сжигали в кварцевых стаканчиках диаметром 16,5мм высотой 50 мм и графитовых цилиндрических формах диаметром 40мм, высотой 100мм в бомбе постоянного давления под избыточном давлении азота. Масса исходной смеси соответственно составляла 15г и 100г при плотности засыпки 1,3-1,5г/см³

В экспериментах определяли среднюю линейную скорость горения (u), относительную потерю массы смеси при горении (η 1) и полноту выхода оксинитрида в слиток η 2, где u = h / t_r, η 1= [(m₁-m₂) / m₁]100%, η 2= (m3/m2)100%, h – высота слоя исходной смеси, t_r – время горения слоя смеси, m₁ - масса исходной смеси, m₂-масса продуктов горения, m₃-масса оксинитридного слитка,. Время горения определяли с помощью видеосъемки и дублировали секундомером.

Для определения химического состава и структуры продуктов синтеза использовали методы аналитической химии, автоэмиссионный сканирующий электронный микроскоп Carl Zeiss Ultra plus на базе Ultra 55.

Горение и химическое превращение в смесях Fe2O3+ xAl+N₂

Термодинамический расчет [4] показал, что расчетная адиабатическая температура горения стехиометрической смеси $Fe_2O_3 + 2Al$ достигает 3500 К при давлении газа более 3 МПа. Исходя из термодинамического расчета, можно сделать вывод, что система $Fe_2O_3 + xAl$ позволяет получать высокотемпературный расплав Al_2O_3 в широком интервале давлений и соотношений Fe_2O_3 и Al.

В экспериментах изучены возможности 3-х подходов (1-3) для синтеза литого оксинитрида алюминия, закономерности и механизмы формирования оксинитридов.

Влияние давления азота в реакторе и содержания алюминия в смеси на закономерности автоволнового синтеза. В экспериментах по горению смеси Fe_2O_3+4A1 было показано, что в интервале давлений 0,1 до 4 МПа скорость горения возрастает в 2 раза, а затем практически не меняется. Под действием давления потеря массы за счет

диспергирования уменьшается от 5-7% до 2-3% масс. Во всем изученном интервале давления полнота гравитационной сепарации фаз близка к 100%, а относительная масса оксидного слоя (η 3) составляет 45–50% масс. Продукты синтеза четко разделяются на 2 слоя, металлический и оксидный, и практически, не имеют сцепления друг с другом.

С ростом содержания Al в смеси $Fe_2O_3+\alpha Al$ скорость горения проходит через максимум (при $\alpha=30$ % масс. максимальная скорость горения составляет 0,35 см/с, потеря смеси (η_1), практически, не меняется и составляет ~5 % масс., рис.1, полнота гравитационной сепарации (η_2) проходит через максимум при $\alpha Al=50$ % масс. снижается от ~50 до 0 % масс., рис. 2.

Химический анализ показал, что с ростом содержания Al исходной смеси содержание азота в литом оксидном слое растет от 1,0 до 1,7 % масс., рис.4, а металлические слои представляют собой различные алюминиды железа с содержанием азота в них от 0,1 до 0,3 % масс.

Горение и химическое превращение в смесях Fe2O3 + xAl + y AlN

В экспериментах было показано, что смесь Fe2O3+4Al+y AlN способна гореть в реакторе под давлением газа в широком диапазоне у AlN. В оптимальных условиях продукты горения имеют вид литого двухслойного слитка: верхний слой (Al-O-N) и нижний слой (Cr-Al). В данном случае целевым продуктом является верхний (оксинитридный) слой.

Отмечено сильное влияние начального давления на содержание связанного азота в оксидных продуктах горения, рис.3. Эти зависимости имеют линейный характер для обеих экзотермических смесей. Максимальные значения связанного азота в литом оксинитриде алюминия получены при начальном давлении азота 10МПа для смеси (3) -1,7% масс. и для смеси (4)-7,0% масс. Очевидно, что основной вклад в содержание азота в оксинитриде вносит нитрид алюминия. Следует отметить, что замена азота на аргон для смеси (4) мало меняет концентрацию азота в оксинитриде.

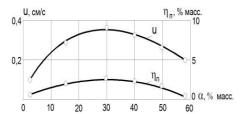


Рис.1. Влияние αAl на u и η_1

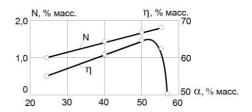


Рис.2. Влияние αAl на N и η_2

Исходная смесь: $Fe_2O_3+\alpha Al$, $P_0=8M\Pi a$, $m_0=100$ г

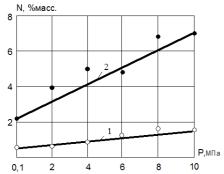


Рис.3. Влияние Р и α Al на N Исходные смеси:1- Fe_2O_3 :Al = 0,6:0,40,

2- Fe₂O₃:Al:AlN=0,54:0,36:0,1.

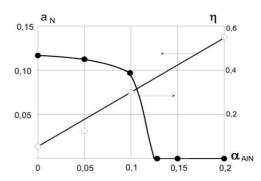
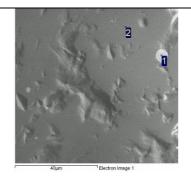



Рис.4. Влияние αAl на N и η_2 Исходная смесь:(Fe₂O₃/Al=0,6/0,40) + αAlN

№.	N	О	Al	Fe	
1	-	-	8.6	91.4	
2	6.3	37.7	56.0	-	

Рис.5. Микроструктура и элементный состав оксинитрида, алюминия, полученного в оптимальных условиях

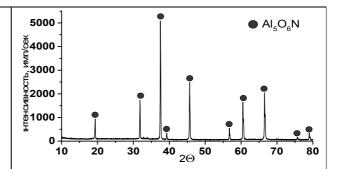


Рис.6. Дифрактограмма оксинитрида алюминия, полученного в оптимальных условиях.

С ростом содержания AIN в исходной смеси (4) от 0 до 10% масс. содержание азота линейно возрастает от ~1,5 до 7,0 % масс, рис. 4. При достижении предельных значений продукты горения теряют способность разделяться на 2 слоя, рис. 4, а затем перестают плавиться и, в конечном итоге, достигается предел горения. За пределами плавления, когда металлическая и оксидная фазы продуктов горения перемешаны и имеют вид пористого спека, содержание азота достигает 13,7 % масс.

Микроструктура и элементный и фазовый состав оксинитрида алюминия, полученного в оптимальных условиях приведеы на рис. 5 и 6. Из рентгенограммы, рис. 6, видно, что он представляет собой практически однофазный Al_5O_6N ($Al_{23}O_{27}N_5$).

Химические и фазовые превращения при горении смеси CrO₃/AIN.

Исследование направлено на выяснение возможности участия AlN в восстановлении CrO_3 в волне горения смеси $CrO_3/Al/AlN$ и определение способности AlN выполнять функцию активного восстановителя.

Расчет адиабатической температуры горения смеси $CrO_3+\alpha AlN$ выполнен с использованием программы «Thermo». В расчетах варьировали содержание AlN в смеси (α) от 0,1 до 5 молей. Расчет показал, что с ростом содержания AlN в смеси температура горения проходит через максимум при α =1 и область реализации высокой температуры узка. рис. 7. Максимальное возможное значение адиабатической температуры горения составляет 2800К.

В экспериментах было установлено, что стационарное горение смеси $CrO_3+\alpha AlN$ исследуемой смеси осуществляется в интервале значений $0.25 \le \alpha < 4.0$. при $\alpha = 0.20$ и $\alpha = 4.0$ достигаются концентрационные пределы горения. при этих значениях, после воспламенения и кратковременного горения, смесь затухает. горение сопровождается значительным задымлением объема реактора. визуальные наблюдения выявили, что перед фронтом горения формируется зона плавления CrO_3 . При горении, высота образцов возрастает на 6-12%, а диаметр несколько уменьшается, поэтому после остывания продукт горения легко извлекается из кварцевого стаканчика, рис.8.

С ростом содержания AlN (α) в исходной экзотермической смеси от 0,25 до 3,75 линейная скорость (α) проходит через максимум, рис.9. При этом потеря массы (α) смеси уменьшается. Полученная зависимость для смеси α 0,25 до 3,75 горения экзотермических смесей термитного типа.

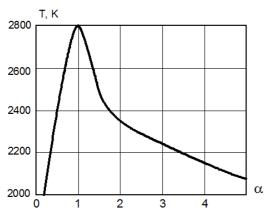


Рис.7. Влияние α AlN на T_r Исходная смесь: CrO3+ α AlN

Рис. 8. Продукты горения смеси $CrO_3 + \alpha AlN$

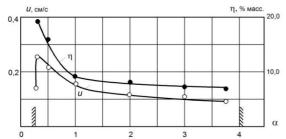


Рис.9. Влияние α AlN на и и η_1 Исходная смесь: CrO_3 + α AlN. P_0 =4МПа

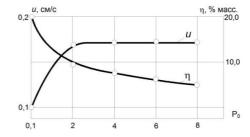


Рис. 10. Влияние Р на u и η_1 Исходная смесь: CrO_3+AlN

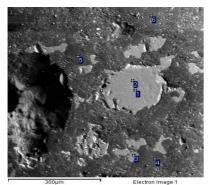


Рис. 11. Микроструктура продуктов горения $CrO_3 + AlN$

№	N	О	Al	Cr	Фазы
1	15.5	4.8	0.1	79.7	Cr-N (O)
2	11.1	7.0	0.1	81.8	Cr-N (O)
3	16.2	18.8	10.1	54.9	Cr-Al-O-N

Таблица 1. Элементный состав структурных составляющих продуктов горения смеси CrO_3+AlN .

С ростом начального давления азота от 0,1 до 1 МПа скорость горения (u) смеси $CrO_3+\alpha AlN$ возрастает, а относительная потеря смеси (η) уменьшается, рис. 10. При дальнейшем росте давления u и η слабо меняются.

Из анализа шлифа продукта горения смеси CrO₃+AlN, рис. 11, следует что образец после горения имеет двухфазную структуру: в темной матрице распределены светлые металлоподобные включения с различной формой и размерами, а также крупные поры.

По данным микроанализа светлые включения, рис. 11, зоны 1 и 2, содержат главным образом Cr и N, а темная матрица, зона 3, содержит Cr, O, N и Al.

Сопоставление интегрального элементного состава исходный смеси ($CrO_3+\alpha AlN$, $\alpha=1,2,$ и 3) и продуктов ее горения приведено в таблице 2.

Табл. 2. Элементный состав исходной смеси и конечнымх продуктов горения смеси $CrO_3+\alpha AlN$, % вес.

	О		N		Cr		Al	
αAlN	расчет.	экспер.	расчет.	экспер.	расчет.	экспер.	расчет.	экспер.
1	34,0	35,0	10,0	0,7	37,0	40,2	19,0	24,1
2	26,0	28,8	15,0	2,7	29,0	33,9	30,0	34,6
3	22,0	25,2	19,0	7,9	23,0	27,7	36,0	39,2

Из анализа результатов следует, что расчетные и экспериментальные значения концентраций Cr, Al и O в исходной смеси и продуктах горения близки, а содержание азота в экспериментах до 15 раз меньше чем в расчете (исходном состоянии). Очевидно, что это связано с его удалением из смеси при горении.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В проведенных исследованиях показано, что возможности схемы (1) для получения литых оксинтридов алюминия ограничены. Максимальное содержание азота в них не превышает 2% вес. Существенно более высокое содержание азота в литых оксинитридах получено при использовании схем (2) и (3), где его содержание достигает 7% вес. и выше.

Следует отметить, что при неизменном содержании AlN в исходной смеси с ростом давления содержание азота в литом оксинитриде существенно возрастает. Это свидетельствует о диссоциации AlN при температуре горения и подавление ее высоким давлением газа (смещении равновесия в сторону высокой концентрации AlN). Этот же эффект оказывает избыток алюминия в исходной смеси.

В исследовании была показана возможность горения модельной смеси $CrO_3+\alpha AlN$ в широком интервале соотношения реагентов, что свидетельствует о необходимости учета участия AlN в химическом превращении в волнах горения других систем термитного типа.

Исходя из анализа экспериментальных результатов можно представить следующую многостадийную схему химического превращения в волне горения смеси оксида металла (MO_n) с Al и AlN в атмосфере N_2 .

Общая схема: MO_n/Al/AlN/ N₂→AlON+MAl_m

Отдельные стадии:

 $MO_n+Al \rightarrow M/Al2O3$

 $MO_n+AlN \rightarrow M/Al_2O_3/N_2$

 $M+Al\rightarrow M/Al$

 $Al+N_2 = AlN$

 $AlN \leftrightarrow Al/N$

 $Al_2O_3+AlN\rightarrow Al/O/N$

Литература

- 1. McCauley J.W., Patel P., Chen M., Gilde G., Strassburger E., Paliwal B., Ramesh K.T., Dandecar D.P. AlON: A brief history of its emergence and evolution // Journal of the European Ceramic Society. − 2009. − №29. − C. 223–236.
- **2.** Zientara, D., Bucko, M., Lis, J. AlON-based materials prepared by SHS technique // Journal of the European Ceramic Society. 2007. Vol. 27. №№2–3 P. 775–779.
- 3. В. А. Горшков, А. Г. Тарасов, В. И. Юхвид. Автоволновой синтез литых оксинитридов алюминия с высоким содержанием азота. Химическая физика, 2010, том 29, № 4, с. 1–5
- 4. С.Л. Силяков, В.А.Горшков, В.И. Юхвид. Влияние давления азота и содержания алюминия в смеси Fe_2O_3 /Al на горение и формирование химического состава продуктов горения. ФГВ, 2012, т.4, № 48, с. 63-67.
- 5. С. Л. Силяков, В. А. Горшков, В. И. Юхвид, Т. И. Игнатьева. Влияние нитридных добавок (AlN и Si₃N₄) на горение смеси Fe2O₃/Al и формирование химического состава продуктов горения. Химическая физика, 2013, том 32, №7, с. 49-53.
- 6. П.А. Милосердов, В.И. Юхвид, В.А. Горшков, М.И. Алымов. Синтез оксинитридов алюминия из смесей MoO₃/Al/AlN методами CBC-металлургии. Перспективные материалы, 2017, № 6, с.69-76.

- 7. С. Л. Силяков, В. И. Юхвид, В. А. Горшков, Т. И. Игнатьева, Н. В. Сачкова,
 Н. Ю. Хоменко. Химические и фазовые превращения при горении смеси CrO3/AlN. ФГВ,
 2018, т. 54, №2, 46-50.
- 8. Р.А. Лидин, Л.О. Андреева, В.А. Молочко. Справочник. Константы неорганических веществ. Дрофа. М.,2006