Лазарев Павел Андреевич

САМОРАСПРОСТРАНЯЮЩИЙСЯ ВЫСОКОТЕМПЕРАТУРНЫЙ СИНТЕЗ ИНТЕРМЕТАЛЛИДНЫХ СОЕДИНЕНИЙ НА ОСНОВЕ СИСТЕМ Ti-Al-X (X = Mg, Si, Mn)

Специальность 1.3.17 – Химическая физика, горение и взрыв, физика экстремальных состояний вещества

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук (ИСМАН)

Научный руководитель	Сычёв Александр Евгеньевич кандидат технических наук, ведущий научный сотрудник ИСМАН
Официальные оппоненты	Амосов Александр Петрович доктор физико-математических наук, профессор, заведующий кафедрой металловедения, порошковой металлургии, наноматериалы, Федеральное государственное бюджетное образовательное учреждение высшего образования Самарский государственный технический университет, г. Самара
	Первухин Леонид Борисович доктор технических наук, профессор, научный руководитель ООО «Битруб Интернэшнл», г. Красноармейск
Ведущая организация	Федеральное государственное автономное учреждение высшего образования «Национальный исследовательский технологический университет «МИСИС», г. Москва.
совета 24.1.124.01 созданного п науки Институте структурной в	« 18 » февраля 2026 года в 10.00 на заседании диссертационного на базе Федерального государственного бюджетного учреждения макрокинетики и проблем материаловедения им. А.Г. Мержанова СМАН), по адресу: 142432, Московская обл., г. Черноголовка,
С диссертацией можно ознаком https://www.ism.ac.ru/n_struct/dso	иться в библиотеке ИСМАН и на сайте: c/annonces/lazarev/lazarev.pdf
просьба направлять по адресу: 1	ртации (в двух экземплярах, заверенных печатью организации) 42432, Московская обл., г. Черноголовка, ул. Академика Осипьяна и совет 24.1.124.01. и по электронной почте petrov@ism.ac.ru.
Автореферат разослан «» ₋	2025 г.
Ученый секретарь диссертацион	лного совета ———————————————————————————————————
ктн	Ternor E.R

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Разработка интерметаллидных соединений на основе титана важна с фундаментальной точки зрения, а также связана с растущим спросом на высокоэффективные материалы в авиационной, аэрокосмической, автомобильной и энергетической отраслях. Эти области требуют материалов с высокой прочностью, низкой плотностью, жаростойкостью и коррозионной стойкостью. Традиционные материалы, такие как стали и алюминиевые сплавы, не всегда удовлетворяют этим требованиям, особенно в экстремальных условиях. Интерметаллиды Ti-Al, благодаря сочетанию высокой удельной прочности и жаростойкости, представляют перспективное направление в материаловедении. Использование сплавов Ti-Al началось во второй половине XX века. Первые попытки применения Ті₃А1 в авиационных двигателях в 1970-х годах столкнулись с технологическими трудностями: высокой температурой плавления, сложностями в обработке и ограниченной рабочей температурой. Дальнейшие исследования сосредоточились на сплавах у-TiAl, однако высокая стоимость и низкая пластичность оставались проблемами для их применения. Прорыв произошел в 2000-х годах, когда ТіАІ начали использовать в турбокомпрессорах автомобилей. Сегодня титановые сплавы и алюминиды титана составляют около трети от массы авиационных двигателей, уступая только никелевым сплавам. Основные недостатки Ti-Al – хрупкость и низкая пластичность при комнатной температуре, что ограничивает их применение в условиях циклических и ударных нагрузок. Для улучшения эксплуатационных свойств алюминидов титана применяется легирование элементами, такими как Mg, Si, Mn, Ni, V и Mo, что повышает пластичность, жаропрочность и коррозионную стойкость. Например, Мд повышает пластичность, Si улучшает литейные свойства, а Мп увеличивает прочность. Влияние каждого элемента на свойства зависит от его концентрации и условий обработки, что требует тщательного изучения фазового состава и микроструктуры. Модификация Ti-Al кремнием Si улучшает механические свойства, повышает износостойкость, твердость и сопротивление окислению до 950 °C, а также увеличивает сопротивление ползучести. Добавление к сплавам Ti-Al легкого конструкционного металла Mg может привести к снижению их плотности, улучшению пластичности. Это особенно важно для аэрокосмической и автомобильной промышленности, где снижение веса конструкции является критическим фактором. Актуальность разработки и получения сплава Ti-Al-Mn на основе фазы Лавеса обуславливается уникальными электрофизическими свойствами этого соединения и его широким применением в различных областях для изготовления прецизионных резисторов, резисторов для шунтов, тензодатчиков и различных нагревательных элементов.

Самораспространяющийся высокотемпературный синтез (СВС) – эффективный метод соединений, обладающий интерметаллических рядом преимуществ перед традиционными подходами. Его высокая производительность обусловлена экзотермической природой реакции, которая после инициации протекает самоподдерживающимся режиме, не требуя постоянного подвода энергии. В отличие от методов плавления и литья, СВС минимизирует потери материала на образование шлаков, обеспечивая высокую чистоту и однородность продукта. Это особенно важно для интерметаллидов, свойства (механические, электрофизические, магнитные) которых зависят от фазового состава и микроструктуры. В этой связи применение метода СВС для легирования алюминидов титана (Ti-Al) весьма перспективно. Легирование элементами, такими как Mn, Mg или Si, позволяет регулировать механические и физические свойства интерметаллидных материалов. Введение этих элементов возможно через добавление порошков в исходную шихту, использование предварительно легированных сплавов с помощью механоактивационной обработки или нанесение покрытий на заготовки/подложки перед синтезом. Последний метод особенно интересен для создания композитов с градиентными свойствами. Процесс CBC в системе Ti-Al-X (где X = Mn, Mg, Si) включает сложное взаимодействие расплава Ti-Al с твёрдой фазой легирующего элемента. На границе раздела фаз происходит диффузионное взаимодействие, образование интерметаллидов, кристаллизация и реакции в твердом состоянии. Изучение этих процессов на микроуровне, включая кинетику реакций, морфологию границ раздела и влияние параметров CBC на микроструктуру имеет большое фундаментальное значение для оптимизации технологии и получения материалов с заданными свойствами.

Актуальность работы подтверждается выполнением ее в соответствии с тематическими планами НИР: Госзадание ИСМАН 122032900080-3 «Фундаментальные исследования фазо- и структурообразования при самораспространяющемся высокотемпературном синтезе и создание химико-технологических основ получения новых материалов для решения прикладных задач», Госзадание ВлГУ 124013000712-9 «Разработка составов и совершенствование технологий изготовления композиционных материалов для повышения эксплуатационных характеристик строительных изделий и конструкций».

Целью работы является получение методом CBC интерметаллидных сплавов на основе систем Ti-Al-X (где X = Mg, Si, Mn), исследование особенностей их фазо- и структурообразования, а также комплексное изучение свойств синтезированных материалов.

Для достижения поставленной цели решались следующие задачи:

- 1. Проведение термодинамического расчёта химических реакций интерметаллидных систем Ti-Al-X (X = Mg, Si, Mn) при получении сплавов методом СВС из смеси элементных порошков.
- 2. Исследование влияния магния, кремния и марганца на параметры и протекание процесса CBC в системах Ti-Al-X (где X = Mg, Si, Mn).
- 3. Изучение особенностей механизма фазообразования и формирования микроструктуры интерметаллидных сплавов Ti-Al-X (где X=Mg, Si, Mn), полученных в процессе CBC.
- 4. Определение физических характеристик синтезированных сплавов, исследование магнитных и электрофизических свойств сплавов на основе системы Ti-Al-Mn и их температурной зависимости в широком диапазоне температур (80÷1200 К).

Научная новизна работы

- 1. Методом самораспространяющегося высокотемпературного синтеза впервые на основе системы Ti-Al-Si, Ti-Al-Mg, Ti-Al-Mn получены интерметаллидные сплавы Ti5 $Al_{0.75}Si_{2.25}$, $Ti_2Al_{18}Mg_3$ сплав на основе фазы Лавеса $TiMn_{0.75}Al_{1.25}$. Исследованы физические характеристики материалов (плотность, пористость, микротвердость). Измерены электрофизические и магнитные характеристики.
- 2. Изучены особенности структуры переходных зон, формирующихся при взаимодействии сплавов Ti-Al-X (где X=Mg, Si, Mg) с Ti-подложкой, в процессе метода CBC-прессования.
- 3. Впервые с помощью метода селективного лазерного плавления продемонстрирована возможность получения наплавок из интерметаллидного СВС-порошка осколочной формы состава $Ti_5Al_{0.75}Si_{2.25}$ на Ti-подложку.
- 4. При синтезе композиционного материала в системе Ti-3Al- SiO_2 формируются стержнеобразные гексагональные кристаллы Ti_5Si_3 на основе твердого раствора $Ti(Al,Si)_3$ выступающие в качестве упрочняющей связки.

Практическая значимость работы

- 1. Продемонстрирована возможность синтеза интерметаллидных сплавов на основе системы $Ti\text{-Al-X}\ (X=Mg,\,Si,\,Mn)$ с помощью метода CBC и определены оптимальные параметры CBC для получения сплавов на основе системы $Ti\text{-Al-X}\ (X=Mg,\,Si,\,Mn)$.
- 2. Разработан новый способ получения сплава на основе Ti-Al-Si (патент РФ на изобретение № 2822644 от 11.07.2024 г. «Способ получения сплава в системе Ti-Al-Si»).

- 3. Показана возможность синтеза интерметаллидного сплава $Ti_{20}Al_3Si_9$ методом СВС-прессования с пористостью менее 3%.
- 4. Впервые реализовано получение 3D структур методом селективного лазерного сплавления из порошка Ti₂₀Al₃Si₉ осколочной формы, синтезированного методом CBC.
- 5. Продемонстрировано получение слоевых металл-интерметаллидных соединений на основе системы Ti-Al-X (X = Mg, Si, Mn) с Ti-подложкой с помощью метода CBC.
- 6. Получены магнитные и электрофизические характеристики сплавов на основе системы Ті-Al-Mn, синтезированных методом СВС, которые используются в современной электронной промышленности при создании компонентов для высокотехнологичных устройств, таких как прецизионные резисторы, резисторы для шунтов, тензодатчики и различные нагревательные элементы.

Основные положения, выносимые на защиту

- 1. Способ получения сплавов в системах Ti-Al-Mn, Ti-Al-Si, Ti-Al-Mg методом самораспространяющегося высокотемпературного синтеза из элементных порошков Ti, Al, Mn, Si и Mg.
- 2. Результаты исследований и анализ влияния составов реакционных смесей в системах Ti-Al-Mg, Ti-Al-Si и Ti-Al-Mn на параметры горения, фазовый состав, механические свойства и микроструктуру продуктов, формирующихся в результате CBC.
- 3. Результаты изучения особенностей микроструктуры и фазового состава переходной зоны, формирующейся в процессе CBC-прессования между продуктами горения системы Ti-Al-Mg, Ti-Al-Si, Ti-Al-Mn и Ti-подложкой.
- 4. Результаты исследования механизмов фазообразования в системе Ti-Al-X (X = Mg, Si, Mn), полученные с помощью методов сканирующей электронной микроскопии, динамической рентгенографии.
- 5. Анализ особенностей структуры и фазообразования композиционного сплава в системе Ti-Al-SiO₂, полученного методом CBC.
- 6. Результаты определения физических характеристик сплавов, синтезированных методом СВС, исследования магнитных и электрофизических свойств сплавов на основе системы Ti-Al-Mn и их температурной зависимости в широком диапазоне температур (80÷1200 K).
- 7. Результаты исследования структуры наплавок из интерметаллидного СВС-порошка осколочной формы состава $Ti_5Al_{0.75}Si_{2.25}$, синтезированного методом СВС, нанесённого на 3D-принтере с помощью метода селективного лазерного плавления на Ti-подложку.

Соответствие содержания диссертации паспорту специальности, по которой она рекомендуется к защите

Диссертационная работа Лазарева П.А. «Самораспространяющийся высокотемпературный синтез интерметаллидных соединений на основе систем Ti-Al-X (X = Mg, Si, Mn)» соответствует:

- паспорту научной специальности: 1.3.17 «Химическая физика, горение и взрыв, физика экстремальных состояний вещества»:
- формуле паспорта диссертации, т.к. в диссертации рассматриваются вопросы применения материалообразующего метода, основанного на использовании энергии/тепла экзотермической реакции в режиме распространения волны либо в режиме теплового взрыва с образованием продуктов горения в виде соединений, представляющих практическую ценность и обладающих ценными характеристиками.
- областям исследования паспорта специальности, в частности: пункту 1 «...механизмы химического превращения и экспериментальные методы исследования химической структуры и динамики химических превращений»; пункту 2 «...поведение веществ и структурно-фазовые переходы в экстремальных условиях»;

пункту 7 «Закономерности и механизмы распространения, структура, параметры и устойчивость волн горения, связь химической и физической природы веществ и систем с их термохимическими параметрами, характеристиками термического разложения и горения».

Апробация работы

Основные результаты и положения диссертации докладывались и обсуждались на следующих научных конференциях: XIV Конференция молодых ученых по общей и неорганической химии 09.04-12.04.2024 Москва; Международная научная конференция "Современная химическая физика - на стыке физики, химии и биологии" 29.11-03.12.2021 Черноголовка; Advanced high entropy materials: abstracts of the IV International Conference and School of Young Scientists 26.09-30.09.2022 Черноголовка; XIX российская ежегодная конференция молодых научных сотрудников и аспирантов «Физико-химия и технология неорганических материалов» 18.10-21.10.2022 ИМЕТ РАН, Москва; XV международная научно-техническая конференция «Современные методы и технологии создания и обработки материалов» 04.10-04.10.2023 Минск, Республика Беларусь; XVI International Symposium on Self-propagating High-temperature Synthesis 09.09-13.09.2024 Yerevan, Armenia; XVI Всероссийский симпозиум по горению и взрыву, 04.09-09.09.2022 г. Суздаль; XVII Всероссийский симпозиум по горению и взрыву, 16.09-20.09.2024 г. Суздаль.

Публикации по теме диссертации

По теме диссертационной работы опубликовано 22 печатные работы, в том числе 14 статей в реферируемых научных журналах, входящих в Перечень ВАК и базы данных Web of Science и Scopus, 8 тезисов в сборниках трудов перечисленных выше конференций, получен 1 патент РФ.

Личный вклад автора

Автором выполнен анализ литературных данных по теме исследования, совместно с научным руководителем сформулированы цели и задачи работы. При непосредственном участии автора был изучен процесс получения интерметаллидных сплавов методом самораспространяющегося высокотемпературного синтеза. В рамках исследования был реализован комплекс экспериментов, направленных на синтез сплавов в системах Ti-Al-X (X = Mg, Si, Mn), которые позволили детально изучить механизмы структуро- и фазообразования в данных системах. Результатом работы стало установление закономерностей этих процессов, определение оптимальных условий синтеза и характеризация физико-механических электромагнитных свойств полученных материалов. Автор непосредственно участвовал в разработке и проведении экспериментальных исследований. Автор принимал непосредственное участие в формулировке основных положений диссертации, написании статей и результатов работы, представленных на научно-практических конференциях.

Достоверность полученных результатов

Достоверность диссертационной работы результатов И обоснованность выводов оборудования и подтверждается использованием современного аттестованных методик исследований, значительным количеством экспериментальных данных, полученных результатов с результатами других исследователей. Также достоверность полученных результатов подтверждена публикациями их в высокорейтинговых отечественных и зарубежных научных журналах, докладами и обсуждениями результатов на конференциях и симпозиумах, патентом РФ на изобретение.

Структура и объем диссертации

Диссертационная работа содержит введение, 5 глав, выводы, список использованных источников и приложение. Общий объем работы составляет 171 страницы, включая 97 рисунков, 11 таблиц и библиографию из 173 наименований.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

СВС - самораспространяющийся высокотемпературный синтез, ВУП - вакуумный универсальный пост, СЛП - селективное лазерное плавление, АТС - Adiabatic Temperature Calculator, РФА - рентгенофазовый анализ, СЭМ - сканирующая электронная микроскопия, ЭДА — энергодисперсионный анализ, ДТА — дифференциально-термический анализ.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении представлена общая характеристика проведенного исследования, включая обоснование актуальности выбранной темы диссертации. Сформулированы цели и задачи, определившие направление исследований, отражены ключевые элементы научной новизны и практической значимости полученных результатов. Представлены основные положения, выносимые на защиту, которым соответствуют ключевые выводы диссертационной работы.

В первой главе приведен литературный обзор научных публикаций, посвященных изучению интерметаллидных соединений на основе бинарных и тройных систем Ti-Al-X (X = Mg, Si, Mn). В главе рассматриваются свойства сплавов на основе системы Ti-Al, а также анализируется влияние легирования магнием, кремнием и марганцем на их структурные, механические и термические характеристики. Рассмотрены различные методы получения интерметаллидных сплавов, и особое внимание уделено методу самораспространяющегося высокотемпературного синтеза (СВС) как одному из перспективных методов получения этих материалов. Проведенный анализ литературы продемонстрировал фундаментальную значимость и перспективность исследований тройных систем Ti-Al-Mg, Ti-Al-Si и Ti-Al-Mn для синтеза сплавов на их основе методом СВС, что открывает возможности для разработки и получения новых тройных интерметаллидных сплавов, включая как легированные сплавы, так и наплавки с однородной структурой.

Во второй главе детально описана методологическая часть исследования. В частности, представлены используемые экспериментальные методики и оборудование, а также приведены характеристики исходных материалов, используемых в синтезе. Кроме того, подробно описаны методы анализа, с помощью которых изучались свойства полученных продуктов. При синтезе сплавов были опробованы следующие методики: СВС в электропечи вакуумного универсального поста; СВС-прессование. В качестве исходных материалов использовали промышленно выпускаемые порошки Ti, Al, Mg, Si, Mn, SiO₂ и сплав АМг6.

Из реакционных смесей (таблица 1) прессовали образцы необходимого размера в форме цилиндра или параллелепипеда. Спрессованные образцы помещали в печь вакуумного поста и нагревали со скоростью 3-5 °C/с до инициирования СВС-реакции.

Система	Составы, моль	Соотношение компонентов, ат. %				
		Ti	Al	Mg	Si	Mn
	Ti + Al + 0.67Mn	37,5	37,5	-	-	25,0
Ti-Al-Mn	(Ti + 0.86Al + 0.98Mn)	35,1	30,4	-	-	34,5
11-AI-MII	(Ti + Al + 0.5Mn)	40,0	40,0	-	-	20,0
	(Ti + 1.3Al + 0.58Mn)	34,8	45,2	-	-	20,0
	(5Ti+12Al+3Si)	25,0	60,0	-	15,0	-
Ti-Al-Si	(7Ti + 5Al + 12Si)	30,0	20,0	-	50,0	-
	(20Ti+3Al+9Si)	62,5	9,5	-	28,0	-
_	(1.27Ti+1.26Al+0.21Mg)	46,5	46,0	7,5	_	-
	(Ti+10Al+5Mg)	6,25	62,5	31,25	_	-

Таблица 1 – Исходные реакционные составы

(Ti+3Al+Mg)

(Ti+5Al+Mg)

 $(Ti+9Al)_2+3Mg$

Ti-Al-Mg

8,7

20,0

14,3

78,3

60,0

71,4

13,0

20,0

14,3

Эксперименты проводили как в атмосфере аргона при давлении 0,1 МПа, так и в вакууме при 13,3·10⁻² Па. При проведении экспериментов методом СВС-прессования образцы помещались на Ті-подложку толщиной 200 мкм, инициирование СВС-реакции проводили с использованием «химической печки», после прохождения реакции к сгоревшему образцу прикладывали давление 100 МПа с помощью гидравлического пресса. При проведении СВС-экспериментов проводились термопарные измерения с помощью термопар ВР-5/20 диаметром 200 мкм и 50 мкм.

Термодинамический анализ был выполнен с применением программного обеспечения «ТНЕRMО и «АТС». Для исследования свойств полученных материалов применялся комплекс аналитических методов и приборов, включающий: сканирующий электронный микроскоп CARL Zeiss Ultra Plus с приставкой INCA для ЭДА, дифрактометр ДРОН-3М, дифференциальнотермический анализатор NETZSCH (STA 449 F1), вибрационный магнитометр EG&G PARC М4500, 4-х точечный метод измерения удельного электросопротивления от температуры при времяпролетный масс-спектрометр TOF-SIMS.5, время-разрешающая постоянном токе, рентгеновская дифракция, оптический микроскоп Axiovert 200 MAT/M и твердомер ПМТ-3, гидростатические методы измерения пористости, плотности. Для механоактивации реакционных смесей использовали планетарную мельницу FRITSCH Pulverisette-5. Эксперименты по селективному лазерному сплавлению проводили при помощи технологии SLM на промышленном 3D-принтере Concept Laser M2cusing.

<u>В третьей главе</u> представлены основные результаты экспериментов по получению интерметаллидного сплава на основе системы Ti-Al-Mn методом CBC. Для реакционных составов (Ti+0.86Al+0.98Mn), (Ti+Al+0.5Mn), (Ti+1.3Al+0.58Mn) (таблица 2) синтез проводили как в режиме прямого нагрева, так и с предварительным прогревом до температуры 450 °C и временем выдержки в течение 1 мин для равномерного прогрева образцов.

Таблица 2 – Реакционные смеси, параметры горения и состав продуктов CBC в системе Ti-Al-Mn

	Параг	метры	Параг	метры	Фазовый состав	Фазовый состав
Реакционная		прогревом	процесса в режиме		продуктов синтеза	продуктов
смесь, моль		50 °C	•	нагрева	в режиме прямого	синтеза с пред.
	T_{1}	T_2	T_1	T_2	нагрева	прогревом
1. Ti+0.86Al+0.98Mn	T _{in} =715 °C T _{max} =885 °C v=4,25 °C/c	T _{in} =610 °C T _{max} =925 °C v=3,6 °C/c	T _{in} =725 °C T _{max} =815 °C v=3 °C/c	T _{in} =610 °C T _{max} =825 °C v=2.5 °C/c	$\begin{aligned} \mathbf{Mn_{3}Al_{2}} \\ \mathbf{\beta}\text{-}\mathbf{Mn} \\ \mathbf{Ti}(\mathbf{Mn_{0,86}Al_{1,14}}) \end{aligned}$	$\begin{aligned} \mathbf{Mn_{3}Al_{2}} \\ \mathbf{\beta}\text{-}\mathbf{Mn} \\ \mathbf{Ti}(\mathbf{Mn_{0,86}Al_{1,14}}) \\ \mathbf{Ti}(\mathbf{Mn_{0,9}Al_{0,1}})_{3} \end{aligned}$
2. Ti+Al+0.5Mn	T_{in} =740 °C T_{max} =940 °C v=8 °C/c	T _{in} =610 °C T _{max} =1075 °C v=5,9 °C/c	T _{in} =710 °C T _{max} =900 °C v=2,9 °C /c	T _{in} =620 °C T _{max} =1100 °C v=2,5 °C/c	$ \begin{array}{c} \text{Ti}(\text{Mn}_{0,86}\text{Al}_{1,14}) \\ \text{(PDF 010-76-6380)} \\ \tau\text{-Ti}(\text{Al}_{2,68}\text{Mn}_{0,32}) \\ \text{Ti} \\ \text{Mn}_{3}\text{Al}_{2} \end{array} $	$Ti(Mn_{0,86}Al_{1,14}) \\ \tau - \\ Ti(Al_{2,68}Mn_{0,32}) \\ Ti$
3. Ti+Al+0.67Mn	-	-	T _{in} =715 °C T _{max} =955 °C v=3,6 °C/c	T _{in} =620 °C T _{max} =1050 °C v=3 °C/c	$\begin{array}{c} \tau\text{-Ti}(Al_{2,68}Mn_{0,32}) \\ \text{Ti}(Mn_{0,75}Al_{1,25}) \\ Mn_{3}Al_{2} \end{array}$	-
4.	T _{in} =780 °C T _{max} =920 °C v=3,4 °C/c	T _{in} =640 °C T _{max} =1135 °C v=3,1 °C/c	T _{in} =640 °C T _{max} =1094 °C v=2,7 °C/c	T _{in} =670 °C T _{max} =1195 °C v=2,8 °C/c	$Ti(Mn_{0,75}Al_{1,25})$ $\tau - Ti(Al_{2,68}Mn_{0,32})$ (PDF 00-051-1117)	$\begin{aligned} & \text{Ti}(\text{Mn}_{0,75}\text{Al}_{1,25}) \\ & \tau\text{-Ti}(\text{Al}_{2,68} \\ & \text{Mn}_{0,32}) \end{aligned}$
Ti+1.3Al+0.58Mn	-	-	T _{in} =710 °C T _{max} =940 °C v=3,2 °C/c	T _{in} =630 °C T _{max} =1115 °C v=2,8 °C/c	Ti(Mn _{0,75} Al _{1,25}) (PDF 01-076-6381)	-

Для всех исследуемых реакционных смесей в системе Ti-Al-Mn распространение волны горения протекает во фронтальном режиме. Температура инициирования CBC-реакции без предварительного прогрева находилась в диапазоне 690÷730 °C. Предварительный прогрев со

средней скоростью нагрева образца 1,7 °C/с до температуры 450 °C приводит к увеличению температуры инициирования до $715 \div 780$ °C.

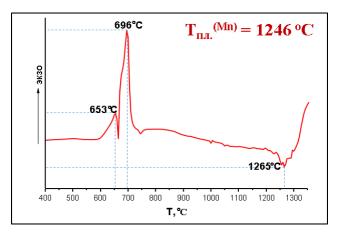


Рисунок 1 – Кривая ДТА реакционного состава 3

Данные ДТА нагрева реакционного состава 3 показывают ряд фазовых превращений на кривой ДТА (рисунок 1). Эндо- и экзо-пики наблюдаются при температурах 653, 696 и 1265 °C. Экзо-пик при 653 °C отвечает началу СВС-реакции и при этом он поглощает эндо-пик соответствующий температуре плавления алюминия. Интенсивный экзо-пик при 696 °C соответствует реакции Мп с Al с образованием интерметаллидной фазы MnAl_x. Согласно равновесной диаграмме состояния Mn-Al,

при 695 °C происходит перитектическая реакция образования орторомбической фазы MnAl₆. В присутствии титана, вероятно, образуется твердый

раствор (TiMn) Al_6 , и при дальнейшем насыщении титаном твердого раствора формируется тройная фаза $TiMn_{0.32}Al_{2.68}$. Плавлению сплава соответствует эндотермический пик при 1265 °C.

Синтез в режиме прямого нагрева образца реакционного состава 4 с относительной плотностью 0,6 показал, что горение проходит во фронтальном режиме со скоростью 4 мм/сек. Температура начала CBC-реакции в образце состава 4 при скорости нагрева 2,8 °C/сек составляет 640-650 °C, а максимальная температура горения - 1195 °C. Синтезированный продукт состоит из фаз $Ti(Mn_{0.75}Al_{1.25})$ с параметрами элементарной ячейки a=5.033 Å, c=8.212 Å и $TiMn_{0.32}Al_{2.68}$. Положение пиков на дифрактограмме, соответствующих фазе $TiMn_{0.32}Al_{2.68}$, смещено влево.

На микроструктуре излома (рисунок 2б) можно заметить образование ламельной структуры с толщиной ламелей до 220 нм.

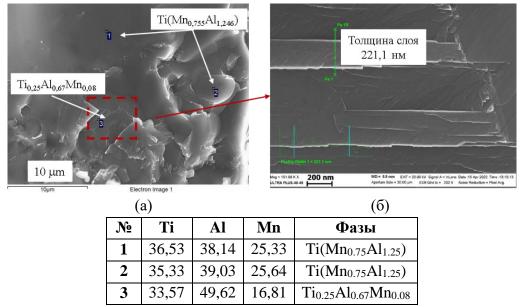


Рисунок 2 — Микроструктура поверхности излома и данные ЭДА (ат. %) образца реакционного состава 4 с предварительным прогревом образца и выдержкой в течение 10 мин

При исследовании динамики фазообразования методом время-разрешающей рентгеновской дифракции (рисунок 3) при нагреве образца в среде гелия (1 атм.) от комнатной до температуры инициирования СВС реакции наблюдаются только рефлексы исходных реагентов Ті, Аl и Мп. При прохождении волны экзотермической реакции, которая инициируется при температуре, близкой к

точке плавления Al (660 °C), рефлексы исходных реагентов исчезают за время, не превышающее 1 с. После исчезновения рефлексов исходных реагентов на дифракционном поле через 1 с возникают рефлексы, соответствующие τ -фазе TiAl_{2.68}Mn_{0.32} и фазе Лавеса Ti(Mn,Al)₂.

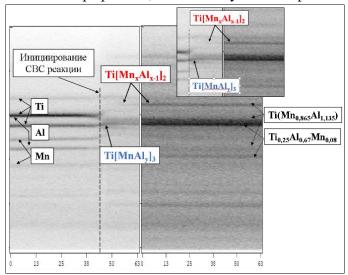


Рисунок 3 — Время-разрешающая рентгеновская дифракция образца реакционного состава 4

Температурный профиль синтеза состава 4 с относительной плотностью прессования 0,70 (рисунок 4а) показывает, что при нагреве образца со скоростью 1,8 град/с начало СВСреакции происходит при 780 °C. Максимальная температура горения составила 1135 °C. Волна горения распространялась вдоль продольной образца во фронтальном режиме скоростью 4,4 мм/с. Стоит отметить, образца дополнительное уплотнение 0,60 относительной плотности 0,70, до повышают температуру начала реакции на ~100 °C.

РФА синтезированного образца с относительной плотностью 0,70 (рисунок 4б) показал, что сплав содержит тройную

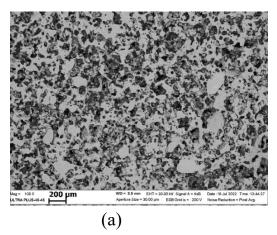

интерметаллидную фазу Лавеса $Ti(Mn_{0.75}Al_{1.25})$ и примесную фазу Al_2O_3 (~2 масс. %).

Рисунок 4 — (а) Термограммы синтеза реакционного состава (Ti+1.3Al+0.58Mn) с относительной плотностью 0.70, (б) результаты $P\Phi A$ и (в) результаты $P\Phi A$ сплава состава (Ti+1.3Al+0.58Mn) с относительной плотность 0,6 после отжига в течение 3 часов

Наличие Al_2O_3 является следствием присутствия адсорбированного кислорода в реакционной камере и в газообразном Ar. Структура содержит большое количество пор размером до 100 мкм. Согласно данным ЭДА химический элементный состав сплава (рисунок 5а) соответствует фазе $Ti(Mn_{0.755}Al_{1.246})$ — участки светло-серого цвета.

В микроструктуре сплава наблюдаются области (рисунок 5а), обедненные марганцем (темно-серые участки). Несмотря на то, что синтезированный образец имеет высокую пористость, межпоровое пространство представляет собой плотный беспористый сплав. На рисунке 56 показаны участки ламинатной наноразмерной структуры, характерной для алюминида титана γ-ТіАl. Пластинчатые зерна (ламели) с толщиной слоев около 117 нм, встречающиеся в отдельных участках, по своей морфологии соответствуют рекристаллизованным зернам γ-фазы, легированной марганцем, содержание которого по данным ЭДА составляет до 10,0 ат. %. Анализ поверхности излома позволил обнаружить также локальные неоднородности в виде крупных (с содержанием Мп до 25,0 ат. %) и мелкозернистых (с содержанием Мп до 15,0 ат. %) включений.

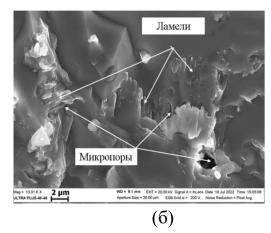


Рисунок 5 – Микроструктура сплава (Ti+1.3Al+0.58Mn) синтезированного с относительной плотностью 0,70 методом СВС в режиме прямого нагрева: (а) поверхность шлифа, (б) увеличенный фрагмент излома

Синтезированные образцы имеют достаточно высокую пористость 28,7 %. Прочность на сжатие синтезированного образца составляет $\sigma_{\text{сж.}} \sim 87\pm 9$ МПа. Образцы разрушались без заметной пластической деформации по механизму внутризеренного хрупкого разрушения. Микротвёрдость синтезированного сплава составила 7.96 ± 0.80 ГПа. Для реакционного состава 4 формирование практически однофазного продукта стало возможно несколькими способами: с помощью дополнительного уплотнения образца перед СВС, что увеличило площадь контакта между частицами, уменьшило теплопотери и, как следствие, обеспечило более полное протекание реакционно-диффузионного процесса, либо путем проведения изотермического отжига при 1000 °C в течение 3 часов, в результате которого произошло насыщение τ -фазы $TiMn_{0.75}Al_{1.25}$.

Для получения беспористого продукта был использован метод CBC-прессования, который также показал возможность получения бездефектного, беспористого сварного соединения между слоем на основе Ti-Al-Mn и Ti-подложкой. В синтезированном образце наблюдается неоднородности структуры сплава на основе Ti-Al-Mn. По мере приближения к переходной зоне можно наблюдать неполную взаимную диффузию Ti с расплавом Al с образованием кольцевидной структуры переменного состава $Ti_xAl_yMn_z$ вокруг частицы Ti, которая в свою очередь покрыта слоем Ti_3Al и находится в матрице, имеющей состав, близкий к фазе $Ti_{0.25}Al_{0.67}Mn_{0.08}$.

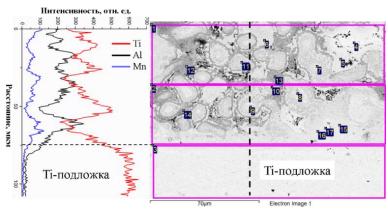
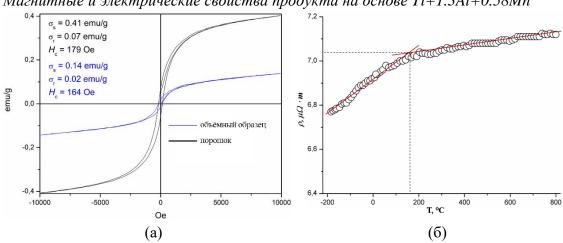



Рисунок 6 – Микроструктура продуктов СВС-прессования и концентрационный профиль распределения элементов Ti, Al и Mn в переходной зоне

Концентрационный профиль распределения элементов в переходной зоне «синтезированный сплав на основе состава 4 - Ті-подложка» показывает, что по мере приближения к Ті-подложке концентрация Мп значительно снижается, при этом концентрация Ті повышается. На рисунке 6 хорошо видны концентрационные профили элементов. При

максимальной концентрации Ti содержание Al и Mn изменяется в противофазе к титану. Из этого следует, что происходит неполное выравнивание по составу. Частицы марганца имеют большой размер, из-за чего не успевают полностью расплавиться и продиффундировать в слой на основе Ti-Al. Показано, что сварное соединение между сплавом состава 4 (Ti+1.3Al+0.58Mn) и Tiподложкой представлено переходной зоной толщиной 1-2 мкм на основе соединения Ti_xAl переменного состава.

Магнитные и электрические свойства продукта на основе Ti+1.3Al+0.58Mn

Рисунок 7 – (а) Магнитные характеристики для объемного и измельченного продукта и (б) температурная зависимость электросопротивления сплава Ti(Mn_{0.755}Al_{1.246})

Намагниченность насыщения продукта горения образца состава 4, содержащего в своем составе фазу $Ti_{0.25}Al_{0.67}Mn_{0.08}$, составила 0.63 эме/г. Было обнаружено, что значения удельной намагниченности насыщения различаются для объемного и измельченного в порошок продукта синтеза (рисунок 7а).

Измерение температурной зависимости удельного электросопротивления (рисунок 76) показало, что увеличение значений удельного электросопротивления не превышало ~ 5 %, что говорит об очень слабой зависимости электросопротивления от температуры, и характерно для таких термостабильных сплавов как константан (около 59 мас. % Cu; 39-41 мас. % Ni и 1÷2 мас. % Mn) и манганин (около 85 мас. % Cu; 11,5÷13,5 мас. % Mn и 2,5÷3,5 мас. % Ni). Значение удельного электросопротивления при комнатной температуре составило 6,9 мкОм·м.

В четвёртой главе диссертационной работы исследовали СВС сплавов в системе Ti-Al-Si. В рамках настоящего исследования для проведения СВС-экспериментов было отобрано три реакционных состава, представленных в таблице 3.

Таблица 3 – Реакционные смеси, параметры горения и состав продуктов CBC в системе Ti-Al-Si

Реакционная	Параметры процесса в режиме прямого нагрева		Фазовый состав	Параметры решетки, Å	Параметры решетки, Å
смесь, моль	T ₁	T ₂	продукта синтеза	(настоящая работа)	(литер. данные)
1. 5Ti+12Al+3Si	T _{in} =780 °C T _{max} =1385 °C v=2.7 °C/c	T _{in} =670 °C T _{max} =1280 °C v=2.3 °C/c	Ti(Al _{2.4} Si _{0.6}) Ti ₅ Si ₄ Ti ₂ AlSi ₃ Al	$Ti(Al_{2.4}Si_{0.6})$ (PDF-01-071-4039) $a = 3,80034$ $b = 3,80034$ $c = 8,56866$	a = 3,780 b = 3,780 c = 8,520
2. 7Ti+5Al+12Si	T _{in} =710 °C T _{max} =1340 °C v=3.2 °C/c	T _{in} =580 °C T _{max} =1120 °C v=2.6 °C/c	Ti ₂ AlSi ₃ TiSi Al Si	Ti_2AISi_3 (PDF-00-056-1144) $a = 5,175$ $b = 13,521$ $c = 3,599$	a = 3,597 b = 13,532 c = 3,597
3. 20Ti+3Al+9Si	T _{in} =770 °C T _{max} =1500 °C v=3.16 °C/c	T _{in} =730 °C T _{max} =1770 °C v=3.17 °C/c	$\mathrm{Ti}_{5}\mathrm{Al}_{0.75}\mathrm{Si}_{2.25}$	$Ti_5Al_{0.75}Si_{2.25}$ (PDF-01-079-2701) $a = 7,493$ $c = 5,175$	a = 5,170 b = 7,552 c = 13,051

Режим протекания СВС-реакции для исследуемых составов существенно различались Для состава 1 со скоростью нагрева 2,7 °C/с, температура инициирования составила 770-780 °C, а максимальная температура – 1150 °C.

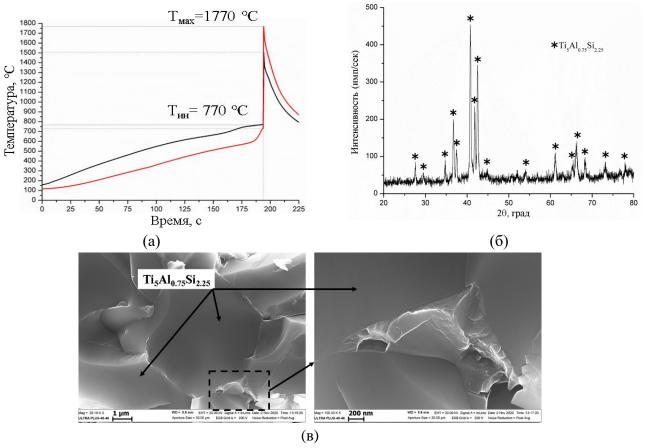


Рисунок 8 – (а) Термограмма синтеза и увеличенный фрагмент термограммы, б) дифрактограмма сплава, (в) микроструктура сплава реакционного состава (20Ti+3Al+9Si)

СВС-реакция протекает во фронтальном режиме со скоростью волны горения 4,3 мм/сек, коэффициент температуропроводности составил $37\cdot10^{-6}$ м²/сек. СВС составов 2 и 3 происходит в режиме «теплового взрыва». Для состава 2, при меньшей скорости нагрева (3,2 °C/c), средняя температура начала реакции составила 770 °C, а максимальная температура горения 1770 °C. Термограмма синтеза для реакционного состава 3 представлена на рисунке 8 (а). Температура инициирования СВС-реакции при скорости нагрева образца 3.2 °C/сек составляет 760-770 °C, а максимальная температура горения - 1770 °C.

Синтезированный сплав состава 3 по результатам РФА (рисунок 8б) является однофазным, основным продуктом реакции является τ -фаза $Ti_5Al_{0.75}Si_{2.25}$, (PDF-01-079-2701). Кристаллическая решётка фазы $Ti_5Al_{0.75}Si_{2.25}$ имеет гексагональную форму, a=7,493 Å, c=5,175 Å.

Структура синтезированного сплава состава 3 состоит из глобулярных частиц размером около 8-10 мкм, состав которых соответствует фазе Ti₅Al_{0,75}Si_{2,25} и имеет высокую остаточную пористость с размерами макропор и полостей сферической формы от 200 до 1500 мкм. На рисунке 8в представлена микроструктура поверхности излома сплава (20Ti+3Al+9Si), которая соответствует хрупкому внутризеренному характеру разрушения с однородной плотноупакованной микроструктурой. Поверхности скола плоские и гладкие. Наблюдаются относительно ровные участки разрушения, ориентационно не связанные с плоскостями скола. Наряду с признаками хрупкого разрушения имеются признаки пластической деформации. Интерметаллидный сплав (20Ti+3Al+9Si) имеет прочность на сжатие 19,0 МПа и среднее значение

микротвёрдости HV_{μ} 10690 МПа. Гидростатическая плотность составила 2,3 г/см³, что сильно отличается от теоретической 3,68 г/см³ ввиду высокой пористости образца.

С целью снижения пористости синтезированного материала был использован метод СВС-прессования, позволяющий уплотнить материал за счет пластической деформации при высокой температуре.

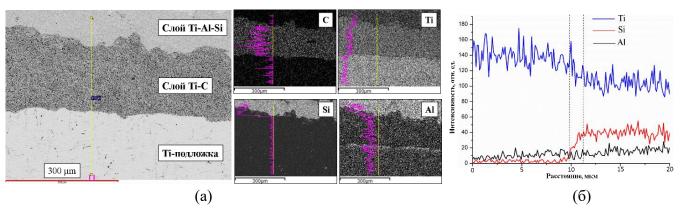


Рисунок 9 — Концентрационный профиль распределения элементов между слоями: (a) конфигурация слоёв Ti-Al-Si/Ti-C/Ti-подложка, (б) конфигурация слоёв Ti-Al-Si/Ti-подложка

На рисунке 9 (а) представлена микроструктура и концентрационное распределение элементов Ti, Al, Si и C в синтезированном многослойном соединении Ti-Al-Si/TiC/Ti. Имеет место прочный контакт между слоями и отсутствие каких-либо дефектов (пор, трещин). Этот факт свидетельствует о высоком качестве диффузионного взаимодействия элементов между слоями. Согласно ЭДА, слой Ti-Al-Si соответствует сплаву на основе основной фазы Ti₅Al_{0.75}Si_{2.25} (PDF-01-079-2701) с гексагональной плотноупакованной решеткой. Кроме того, присутствует вторичная упорядоченная фаза со сверхструктурой $D0_{19}$ Ti_3Al (PDF 52-859), обладающей $\Gamma\Pi Y$ кристаллической решеткой (пространственная группа Р63/mmc). Содержание основной фазы (рассчитанное по методу Ритвельда) $Ti_5Al_{0.75}Si_{2.25}$ составило 87 масс. %, содержание фазы Ti_3Al -13 масс. %. Ті-С слой представляет собой карбид титана, соответствующий составу ТіС0,66 (кубической структуры Fm₃m). 3-слой соответствует Ті-подложке. Переходные зоны между слоями очень узкие и не превышают 10-15 мкм. На концентрационном профиле распределения элементов между слоями (рисунок 9а) заметно небольшое увеличение концентрации алюминия в приграничной области между слоями Ті/ТіС, что вызвано плавлением титановой подложки в результате тепловыделения в процессе реакции в слое Ti-C. Наблюдается диффузия Al в титановую подложку через слой Ti-C. При этом глубина диффузии Al в Ti-подложку невелика (~30 мкм). Концентрация кремния при переходе из слоя Ti-Al-Si в Ti-C резко падает и остается на нулевых значениях и в слое титановой подложки. На рисунке 9 (б) представлены данные анализа микроструктуры в области соединения (переходной зоны) реакционной таблетки Ti-Al-Si с титановой подложкой и концентрационный профиль распределения элементов Ti, Al и Si. В Ті-подложки и слоя Ті-Al-Si на границе контакта слоев результате взаимодействия сформировалась переходная зона толщиной 1-2 мкм. Тепло, выделившееся в результате экзотермической химической реакции в реакционной таблетке, способствует протеканию процессов реакционной диффузии в Ті-подложке и слое Ті-Al-Si. Концентрационные профили распределения Ti и Al в области переходной зоны имеют плавное незначительное изменение концентраций. Концентрация же Si заметно падает при переходе из слоя Ti-Al-Si в Ti-подложку, что может говорить о прочной химической связи в образовавшемся силициде титана. Результаты ионного картирования, полученные с помощью времяпролетной масс-спектрометрии, показали однородное распределение ионов Ti⁺, Al⁺, Si⁺ и кластерных ионов TiAl⁺, TiSi⁺ как на поверхности

образца, так и по глубине травления, что также подтверждает гомогенность синтезированного продукта.

Механические свойства

Рассчитанный по методу Палмквиста для слоя на основе Ti-Al-Si коэффициент трещиностойкости K_{Ic} равен 5,1÷5,7 МПа·м¹/², что коррелирует с результатами других работ. При внедрении индентора HV величина общей деформации под индентором постоянна и равна 8% деформации растяжения. Величина пластической деформации $\varepsilon_{пл.}$ при макроиндентировании составила 89 %, а значение упругой деформации $\varepsilon_{упр.}$ – 11 %. Величина невосстановленной твердости равна 6300±615 МПа, восстановленной твёрдости 8150±2420 МПа.

Традиционные методы обработки СВС-материалов часто требуют дополнительного измельчения и сфероидизации порошков, что увеличивает стоимость и энергозатраты производства. В связи с этим, разработка подходов к СЛП-обработке с использованием порошков осколочной формы, получаемых непосредственно методом СВС, является актуальной и перспективной задачей. Методом СЛП из порошка осколочной формы сплава состава (20Ti+3Al+9Si), полученного методом СВС из элементарных порошков Ti, Al и Si, нанесены наплавки квадратного сечения размером 1х1 мм на титановую подложку с применением 5 режимов лазерной обработки и последовательным нанесением 20 слоев порошка. РФА наплавок показал, что основной фазой является $\text{Ti}_5\text{Al}_{0.75}\text{Si}_{2.25}$ (PDF-01-079-2701), что полностью повторяет состав использованного при 3D печати СВС-порошка (рисунок 11 (а)).

На рисунке 11 (б) показана микроструктура поперечного сечения «наплавка – Ті подложка» и концентрационные профили распределения Ті, Al и Si вдоль линии «наплавка – Ті подложка».

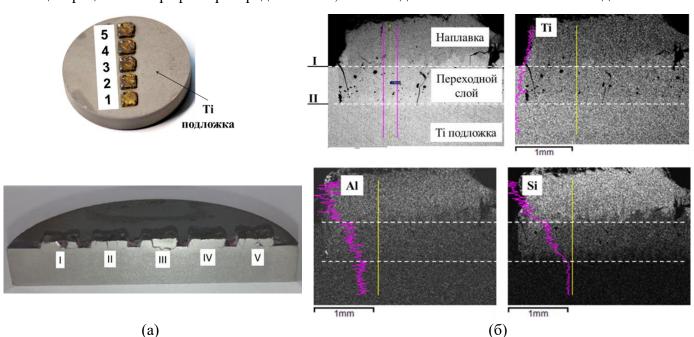


Рисунок 11 – (а) Внешний вид синтезированных образцов на поверхности титановой подложки и в разрезе при различной скорости лазерного сканирования: (I) 200 мм/с, (II) 222 мм/с, (III) 260 мм/с, (IV) 285 мм/с, (V) 333 мм/с, (б) СЭМ фотографии микроструктуры поверхности образца I в разрезе и концентрационное распределение элементов в переходной зоне

Для всех пяти образцов наблюдалась характерная микроструктура с наличием переходной зоны с формированием ванны расплава в титановой подложке вследствие нагрева поверхности выше температуры плавления Ті. Отчетливо видно, что во всех пяти образцах происходит диффузия Al и Si в титановую подложку на глубину до 500÷600 мкм. Диффузией алюминия и кремния в подложку объясняется и более высокая концентрация титана в нижних слоях наплавки по сравнению с содержанием Ті в исходном сплаве. Только в самых верхних слоях

интерметаллидной наплавки содержание титана соответствует тройной фазе $Ti_5Si_{0.75}Al_{2.25}$. Отмечается также заметное трещинообразование на поверхности наплавок, кроме образца 4 с линейной плотностью лазерного излучения 1,351 кДж/м.

В качестве альтернативного источника Si были проведены СВС-эксперименты в системе Ti-Al-SiO₂. Перед проведением CBC была выполнена механоактивационная обработка исходных смесей для уменьшения размера частиц исходных компонентов. Синтез проводили для четырех составов с различным содержанием SiO₂ от 5 до 20 масс. %. CBC образцов для всех составов проходил в режиме фронтального горения. Учитывая то, что температура горения смеси (Ti+3Al) составляет ~ 1300 К, а добавление диоксида кремния может ее незначительно снижать, синтез проходил с образованием жидкой фазы алюминия, а также возможных легкоплавких эвтектик в системах Al-Si и Ti-Si. РФА всех четырех составов показал, что продукты горения представлены основной фазой на основе твердого раствора Ti(Al,Si)3, вторичными фазами Al₂O₃, Ti₅Si₃ (PDF No29-1362, гексагональная, пр. гр. P63/mcm) И незначительным количеством непрореагировавшего алюминия АІ. На рисунке 12 (а) показана морфология синтезированной фазы Ti₅Si₃, которая представлена кристаллами в форме гексагональной призмы. Матрица синтезированного сплава состоит из крупных зерен TiAl₃, которые формируются в виде пластинчатых выделений по границам крупных зерен α-Ti. Образование соединения TiAl₃ проходит по перитектической реакции из расплава и ζ-фазы при температуре 1668 К. Матрица сплавов, содержащих в исходном составе SiO2, состоит из крупных зерен на основе твердого раствора $Ti(Al,Si)_3$. Поверхность пор покрыта зернами оксидов Al_2O_3 . В синтезированных сплавах, содержащих в своем составе SiO₂, обнаружены колонии столбчатых кристаллитов Ti₅Si₃, которые имеют вид правильной гексагональной призмы.

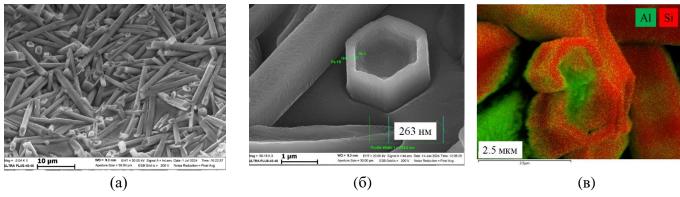


Рисунок 12-(a) Микроструктура поверхности излома Ti-3Al-20 масс. % SiO₂, (б) увеличенный фрагмент структуры кристалла Ti₅Si₃ и (в) распределение элементов Al и Si по объёму гексагонального кристалла

Стержни Ti_5Si_3 формируются из матрицы $Ti(Al,Si)_3$. На рисунке 12 (б) видно, что кристаллы Ti_5Si_3 соединены в сетчатую структуру, образуя кластеры, которые формируют пространственный каркас, похожий на «птичье гнездо». Кристаллы Ti_5Si_3 имеют форму шестиугольной призмы. Также можно заметить, что часть кристаллов имеет полость вдоль центральной оси <0001> с толщиной стенки внешнего каркаса ~260 нм или же имеют заметную границу между сердцевиной и оболочкой, композиционное различие которых было показано с помощью ЭДА (рисунок 12в).

Причина формирования призм типа "ядро-оболочка" с сердцевиной, обогащенной алюминием, заключается в том, что диффузия Ti и Si во внутреннюю область во время роста кристалла затруднена из-за большого расстояния диффузионного пробега. В результате скорость роста плоскостей внешней оболочки кристалла вдоль направления призмы <0.001> намного выше, чем внутренней области, в результате чего в центре Ti_5Si_3 образуется полость. Следовательно, расплав Al будет проникать в полость кристалла, превращая Ti_5Si_3 в структуру "ядро-оболочка" с

сердцевиной, обогащенной алюминием, с образованием фазы $Ti_5(Al,Si)_3$. Замещение Si атомами Al приводит к повышению пластичности Ti_5Si_3 . Кристаллографическая структура модифицированных соединений $Me_{5-x}(Ti_x{}^{\text{M}},Si_3)$ и $Ti_5(Si_{3-y}Al_y)$ типа $D8_8$ остается неизменной.

<u>Пятая глава</u> диссертационной работы описывает результаты экспериментов по СВС τ -фазы $Ti_2Al_{18}Mg_3$ в системе Ti-Al-Mg (таблица 4).

Таблица 4 – Реакционные смеси,	параметры го	рения и состав п	ролуктов СВС 1	в системе Ti-Al-Mg
Turningu . Tuningiroimbir omiroim,	1100 p 001/12 1 p 22 1 0	P	, pog / 111 oz oz o	

Реакционная смесь, моль	Параметры процесса в режиме прямого нагрева		Отн. плотность прес. образца	Фазовый состав продукта синтеза		
emees, mesis	T1	T2	престооризда	продукта оп		
1.	T_{in} =745 °C T_{max} =1180 °C	T_{in} =680 °C T_{max} =1087 °C	0,60	TiAl	TiAl ₃	
1.27Ti+1.26Al+0.21Mg	v=3,2 °C/c	v=2.9°C/c	0,00	Ti ₃ Al	MgO	
2. Ti+3Al+Mg	T_{in} =808 °C T_{max} =1010 °C v=3.2 °C/c	$T_{in} = 750 \text{ °C}$ $T_{max} = 995 \text{ °C}$ v = 2.9 °C/c	0,60	TiAl₃ TiN	AlN MgO MgAl ₂ O ₄	
3. Ti+5Al+Mg	T_{in} =835 °C T_{max} =1050 °C v=2.9 °C/c	T_{in} =790 °C T_{max} =1020 °C v=2.8 °C/c	0,60	TiAl ₃ Ti ₂ Al ₁₈ Mg ₃ (PDF 43-1353)	$\begin{array}{c} Al_{0.95}Mg_{0.05} \\ MgO \end{array}$	
4. Ti+10Al+5Mg	$T_{in} = 785 \text{ °C}$ $T_{max} = 908 \text{ °C}$ v = 2.76 °C/c	T _{in} =770 °C T _{max} =898 °C v=2.74 °C/c	0,60	TiAl ₃ Ti ₂ Al ₁₈ Mg ₃ (PDF 43-1353)	Al MgO Mg ₂ Al ₃	
5. ((Ti+9Al) ₂ +3Mg)	T _{in} =835 °C T _{max} =985 °C v=3 °C/c	T _{in} =805 °C T _{max} =980 °C v=2.9 °C/c	0,60	TiAl ₃ Ti ₂ Al ₁₈ Mg ₃ (PDF 43-1353)	MgO	

В результате СВС реакционных составов 1-4 происходило образование многофазных продуктов с неоднородной микроструктурой. Данный эффект вызван рядом факторов, включая высокую скорость нагрева и охлаждения, испарение магния и неравновесные условия, возникающие в зоне реакции СВС.

Горение реакционного состава 5 ((Ti+9Al)₂+3Mg) протекает в режиме «теплового взрыва». Скорости нагрева образца -3 °C/сек. Температура инициирования СВС-реакции (рисунок 13а) данного состава составила 830-840 °C. Максимальная температура синтеза составила 980 \pm 10 °C.

Методом рентгеноструктурного анализа было установлено, что синтезированный сплав состава 5 (рисунок 13б) состоит из интерметаллидной фазы $TiAl_3$ и твёрдого раствора замещения $Ti_2Al_{18}Mg_3$, который образуется в результате реакции ($2TiAl_3+12Al+3Mg$). Также зафиксировано образование небольшого количества MgO на поверхности образца, вследствие осаждения частиц Mg вследствие его интенсивного испарения во время синтеза.

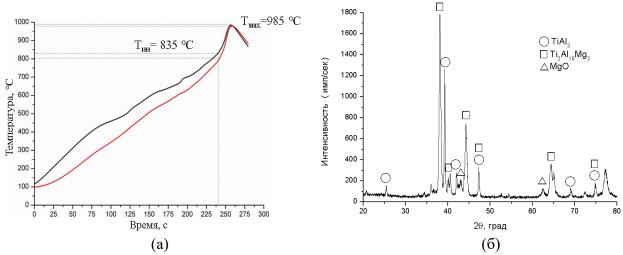
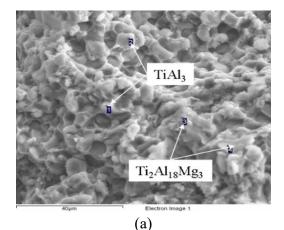



Рисунок 13 - (a) Термограмма синтеза, (б) дифрактограмма сплава реакционного состава 5 $((Ti+9Al)_2+3Mg)$

№	o	Mg	Al	Ti
1	9.4	2.4	55.7	32.5
2	0	1.5	61.0	37.5
3	5.8	11.6	73.7	8.9
4	0	10.6	70.8	18.6

(б)

Рисунок 14 – (а) Микроструктура и (б) результаты ЭДА сплава состава 5 (Ti+9Al)₂+3Mg, масс. %

Микроструктура излома сплава однородная (рисунок 14 (а)), представляет собой ямочный микрорельеф, характеризующийся вязким разрушением. Зерна сплава на основе фазы $TiAl_3$ (рисунок 14 (б) точки 1, 2) покрыты матрицей состава, близкого к расчётному для фазы $Ti_2Al_{18}Mg_3$ (рисунок 14, (б) точки 3, 4).

Механические свойства

Микротвердость структурных компонентов сплава Ti-Al-Mg имеет следующие значения: для округлых зерен $TiAl_3-2040$ МПа, для межзеренных прослоек на основе $Ti_2Al_{18}Mg_3-1140$ МПа. Интерметаллидные сплавы на основе Ti-Al-Mg обладают невысокими прочностными характеристиками, что подтверждается результатами испытания на сжатие. Прочность на сжатие сплава Ti-Al-Mg-12.1 МПа, а предел текучести -9.87 МПа.

Для улучшения контакта между частицами и уменьшения теплопотерь перед синтезом проводилось предварительное уплотнение образца до относительной плотности 0,7.

Синтез реакционного состава 5 с относительной плотностью 0.7 и скорости нагрева образца 1.6 °С/с горел в режиме теплового взрыва. РФА показал, что синтезированный сплав повторяет фазовый состав продукта синтеза состава 5, однако в продуктах горения данной смеси присутствует значительное количество избыточного Al. Таким образом, плотность прессования может влиять на фазовый состав синтезированного продукта.

Для уменьшения пористости синтезируемых продуктов был использован метод СВС-прессования. Согласно результатам РФА (рисунок 15), в сплавах, синтезированных из реакционного состава 5, полученных данным методом, содержатся бинарные интерметаллидные фазы $TiAl_3$ и $Al_{0.92}Mg_{0.08}$.

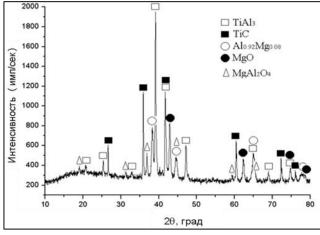


Рисунок 15 — Дифрактограмма сплава, синтезированного из реакционного состава 5, полученного методом СВС-прессования.

Кроме того, на дифрактограмме присутствуют пики оксидных фаз MgO и MgAl₂O₄. Первичное образование оксидов мешает диффузионному взаимодействию элементов для формирования тройной интерметаллидной фазы.

рисунке 16 представлена фотография микроструктуры сплава состава 5, наплавленного поверхность титановой на подложки методом СВС-прессования. Анализ микроструктуры показал, что сварной шов по всей поверхности контакта между сплавом подложкой не имеет дефектов и нарушений сплошности. Переходной слой между сплавом на

основе Ti-Al-Mg и Ti-подложкой имеет толщину не менее 15 мкм и, в основном, состоит из интерметаллидной фазы Ti_3Al .

Концентрационный профиль распределения элементов в сплаве на основе реакционной смеси состава 5 (рисунок 16) показывает, что в результате диффузионного взаимодействия вокруг частиц титана Ті образуются кольцевые структуры на основе фаз ТіАІ и Ті $_3$ АІ. При этом необходимо отметить, что из-за высоких теплопотерь вследствие контакта материала с оксидом кремния SiO $_2$ (материал засыпки в пресс-форме) и проведения синтеза в атмосфере воздуха, полное взаимодействие элементов Ті с АІ и Мg не происходит. Также на концентрационном профиле распределения элементов можно наблюдать участки диффузии Mg в слой Ті-АІ с образованием твёрдого раствора переменного состава $Ti_xAl_yMg_z$.

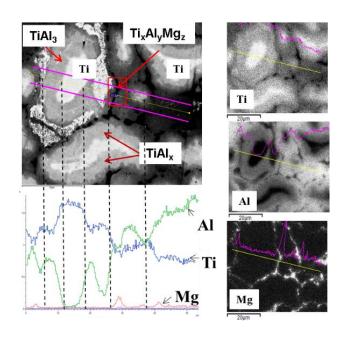


Рисунок 16 – Микроструктура шлифа продуктов синтеза состава 5, полученного методом СВСпрессования, и данные ЭДА в точках (ат.%)

В процессе СВС-экспериментов в системе Ti-Al-Mg было замечено, что при синтезе происходит интенсивное газовыделение с образованием MgO, что приводит к уменьшению количества магния в образце и образованию налета белого цвета на его поверхности и деталях реакционной камеры. Образцы имеют высокую пористость, что связано с испарением магния из образца в виду его низкой температуры кипения 1090°С. Разница в температурах плавления Mg (649 °C) и Ti (1678 °C) приводит к интенсивному испарению Mg при протекании СВС-реакции.

Микротвёрдость зёрен Ti-Al в сплаве, синтезированном методом CBC-прессования, имеет среднее значение $5820~\text{M}\Pi a$, а матрицы на основе Al-Mg $-3980~\text{M}\Pi a$. Гидростатическая плотность равна $3.3~\text{г/см}^3$ при пористости менее 13~%.

Результаты динамического РФА показали, что после инициирования СВС-реакции, пики исходных элементов исчезают и появляются пики, соответствующие интерметаллидам системы Ti-Al. Из литературных данных и проведённых автором исследований предполагается следующий механизм фазообразования. В процессе нагрева образца происходит разрушение оксидных плёнок на поверхности частиц. Далее формируется жидкая фаза Al-Mg в ходе плавления частиц Al и Mg. В образовавшемся расплаве Al-Mg происходит смачивание частиц Ti с последующим растворением их в расплаве. Расплав, расположенный на границе раздела Ti/Al-Mg, насыщается Ti и формируется фаза TiAl₃. Так как магний с титаном интерметаллидов не образует, в дальнейшем происходит насыщение и замещение атомов Al в кристаллической решётке TiAl₃ атомами Mg с

образованием твёрдого раствора замещения $Mg_3(TiAl_9)_2$ в результате следующей реакции: $12Al+3Mg+2TiAl_3 \rightarrow Ti_2Al_{18}Mg_3$.

При проведении СВС-экспериментов в системе Ti-Al-Mg было замечено различие в химических составах исходных реакционных смесей и продуктов синтеза. Наиболее сильно это различие наблюдалось при проведении экспериментов в вакууме. В процессе СВС-реакции происходит интенсивная термоэмиссия заряженных частиц магния, приводящая к объемной ионизации газа между образцом и витками электрической спирали печи, что приводит к образованию низкотемпературной плазмы. Сразу после начала СВС-реакции вокруг образца возникает светло-зеленое свечение газа в виде облака или столба (в случае, когда образец находится в кварцевой трубке). Методом оптической эмиссионной спектроскопии с использованием компактного USB спектрометра ССS100M с рабочим диапазоном 300÷700 нм и спектральным разрешением 0.5 нм был получен спектр интенсивностей излучения в диапазоне от 500 до 600 нм, который соответствует ионам Mg. Доминирующая длина волны соответствует 528,15 нм (Mg), коррелированная цветовая температура равна 7756 К.

Основные результаты и выводы по работе

- 1. Впервые методом CBC синтезирован сплав на основе фазы Лавеса $Ti(Mn_{0.755}Al_{1.246})$ (PDF 2 #76-6381, пр.гр. P63/mmc) с параметрами элементарной ячейки a=5.033 Å, c=8.212 Å. Установлено, что однофазный сплав с содержанием фазы Лавеса $Ti(Mn_{0.755}Al_{1.246})$ 98,0 мас. % формируется при относительной плотности прессования 0.7 во фронтальном режиме горения со скоростью волны 4,4 мм/с. Коэффициент температуропроводности в режиме прямого нагрева составил $23\cdot10^{-6}$ м²/с при температуре инициирования 710 °C и максимальной температурой горения 1115 °C.
- 2. Впервые методом СВС в режиме теплового взрыва был синтезирован сплав на основе τ -фазы $Ti_5Al_{0.75}Si_{2.25}$ (PDF-01-079-2701) с гексагональной плотноупакованной решёткой с параметрами элементарной ячейки, а=7,493 Å, c=5,175 Å. Температура инициирования составила 770 °C и максимальной температурой горения 1770 °C.
- 3. Впервые методом СВС в режиме теплового взрыва в системе Ti-Al-Mg был синтезирован сплав на основе твёрдого раствора замещения $Ti_2Al_{18}Mg_3$ (PDF 43-1353), представляющий собой материал на основе интерметаллида $TiAl_3$ в матрице фазы $Ti_2Al_{18}Mg_3$. Температура инициирования реакции 835 °C. Максимальная температура горения составила 985 °C.
- 4. Показано, что при взаимодействии реакционных слоев на основе Ti-Al-X (X=Mg, Si, Mn) с Ті-подложкой в процессе СВС-прессования в результате экзотермической химической реакции происходит диффузионное взаимодействие на границе раздела слоев (Ti-Al-Mn)/Ti-подложка; (Ti-Al-Si)/(Ti-C); (Ti-C)/Ti и (Ti-Al-Mg)/Ti-подложка, приводящее к образованию сплошного соединения с толщиной переходной зоны 2-15 мкм.
- 5. Методом СВС-прессования синтезирован сплав на основе фазы $Ti_5Al_{0,75}Si_{2,25}$ с гексагональной плотноупакованной решёткой с параметрами, а=7,493 Å, c=5,175 Å (87 мас. %) и упорядоченной фазы Ti_3Al со сверхструктурой $D0_{19}$ (13 мас. % по Ритвельду) с плотностью 3.9 г/см³ и пористостью 2.7 %.
- 6. Измерения температурной зависимости удельного электросопротивления сплава на основе фазы Лавеса $Ti(Mn_{0.755}Al_{1.246})$ показали значение при комнатной температуре 6,9 мкОм·м. Общее увеличение электросопротивления не превышало ~ 5 %.
- 7. Впервые методом селективного лазерного плавления на 3D принтере получены образцы сплава на основе однофазного CBC-порошка $Ti_5Al_{0.75}Si_{2.25}$ осколочной формы. Полученный методом СЛП сплав наследует фазовый состав исходного CBC-порошка сплава на основе фазы $Ti_5Al_{0.75}Si_{2.25}$.
- 8. Впервые исследованы особенности структуро- и фазообразования в системе Ti-3Al-SiO₂. Показана возможность синтеза композиционного материала на основе твердого раствора Ti(Al,Si)₃. В объёме синтезированного материала формируются кристаллы, представляющие собой

- стержнеобразные гексагональные призмы Ti_5Si_3 , имеющие структуру «оболочка-ядро», где центральная часть образована фазой $Ti_5(Si,Al)_3$. Внутренняя область («ядро»), обогащенная алюминием, способствует повышению пластичности материала.
- 9. Показано, что в процессе синтеза в системе Ti-Al-Mg в вакууме в результате интенсивной термоэмиссии ионов Mg создаются условия для объемной ионизации газа между образцом и электрическими витками нагревательной печи, что приводит к образованию низкотемпературной плазмы. Методом оптической эмиссионной спектроскопии зарегистрирована доминирующая длина волны 528 нм, соответствующая Mg, коррелированная цветовая температура равна 7756 К.

Публикации по теме диссертации

- 1. Сычёв, А.Е. Формирование гексагональных кристаллов $Ti_5(Al,Si)_3$ в процессе самораспространяющегося высокотемпературного синтеза в системе Ti-Al-SiO₂. / А.Е. Сычев, М.Л. Бусурина, **П.А. Лазарев**, О.Д. Боярченко, О.В. Белоусова, И.Д. Ковалев. / Материаловедение. -2025. -№. 3. C. 16-23. DOI: 10.31044/1684-579X-2025-0-3-16-23;
- 2. **Лазарев, П.А.** Исследование структуры и свойств металл-интерметаллидного материала на основе (Ti–Al–Mg)/Ti, полученного методом самораспространяющегося высокотемпературного синтеза совмещенного с прессованием / П.А. Лазарев, А.Е. Сычёв, Ю.В. Богатов, О.Д. Боярченко/ Перспективные материалы. 2024. № 1. С. 67-76. DOI: 10.30791/1028-978X-2024-1-67-76;
- **Lazarev, P.A.** A Study of the Structure and Properties of a Ti–Al–Mg/Ti-Based Metal–Intermetallic Material Produced by Self-Propagating High-Temperature Synthesis Combined with Pressing / P.A. Lazarev, A.E. Sytchev, Yu.V. Bogatov, O.D. Boyarchenko / Inorganic Materials. 2024. Vol. 15. No. 5. P. 1421–1428. DOI: 10.1134/S2075113324701089;
- 3. Бусурина, М.Л. Самораспространяющийся высокотемпературный синтез сплава $Ti(Mn_{0,755}Al_{1,246})$: структура, магнитные и электрические свойства / М.Л. Бусурина, **П.А. Лазарев**, Ю.Г. Морозов, А.В. Карпов, А.Е. Сычев / Материаловедение. 2024. № 4. С. 34-40. DOI: 10.31044/1684-579X-2024-0-4-34-40;
- 4. **Lazarev, P.A.** Features of Selective Laser Melting of SHS-Prepared Intermetallic Alloy Ti₂₀Al₃Si₉ / P.A. Lazarev, A.S. Raznoschikov, M.L. Busurina, O.D. Boyarchenko, I.D. Kovalev, A.E. Sytschev / International Journal of Self-Propagating High-Temperature Synthesis. 2024. Vol. 33. No. 4. P. 287–294. DOI: 10.3103/S1061386224700328;
- 5. **Lazarev, P.A.** Thermal Ionization during SHS of Ti–Al–Mg System / P.A. Lazarev, V.Yu. Barinov, A.E. Sytschev / International Journal of Self-Propagating High-Temperature Synthesis. –2024. Vol. 33. No. 4. P. 327–329. DOI: 10.3103/S106138622470033X;
- 6. **Лазарев, П.А.** Получение слоевого (Ti–Al–Si)/(Ti–C)/Тi сплава методом СВС-прессования / П.А. Лазарев, А.Е.Сычев, М.Л. Бусурина, А.Н. Грядунов, А.Ф. Беликова / Известия вузов. Порошковая металлургия и функциональные покрытия. − 2023. − Т. 17. − №. 1. − С. 21–27. https://doi.org/10.17073/1997-308X-2023-1-21-27;
- **Lazarev, P.A.** Fabrication of (Ti–Al–Si)/(Ti–C)/Ti layered alloy by SHS pressing / P.A. Lazarev, M.L. Busurina, A.N. Gryadunov, A.E. Sytschev, A.F. Belikova / Powder Metallurgy and Functional Coatings. 2023. Vol. 17. No. 1. P. 21–27. DOI: 10.17073/1997-308X-2023-1-21-27;
- 7. **Лазарев, П.А.** Самораспространяющийся высокотемпературный синтез в системе Ti-Al-Mn / П.А. Лазарев, М.Л. Бусурина, А.Е. Сычев / Физика горения и взрыва. 2023. Т. 59. № 1. С. 85-91. DOI 10.15372/FGV20230109;
- **Lazarev**, **P.A.** Self-Propagiating High-Temperature Synthesis in Ti–Al–Mn System / P.A. Lazarev, M.L. Busurina, A.E. Sytschev / Combustion, Explosion, and Shock Waves. 2023. Vol. 59. No. 1. P. 78–84. DOI: 10.1134/S0010508223010094;

- 8. **Лазарев, П.А.** Самораспространяющийся высокотемпературный синтез в системе Ti-Al-Mn / П.А. Лазарев, М.Л. Бусурина, О.Д. Боярченко, Д.Ю. Ковалев, А.Е. Сычев / Неорганические материалы. -2023.- Т. 59.- № 6.- С. 705-711. DOI: 10.31857/S0002337X23060118;
- **Lazarev**, **P.A**. Self-Propagating High-Temperature Synthesis of a Ti–Al–Mn Alloy / P.A. Lazarev, M.L. Busurina, O.D. Boyarchenko, D.Yu. Kovalev, A.E. Sytschev / Inorganic Materials. 2023. Vol. 59. No. 6. P. 677-683. DOI: 10.1134/S0020168523060110;
- 9. Sytschev, A.E. Combustion Synthesis and Phase Formation in the Ti–Al–Mn Alloy / A.E. Sytschev, M.L. Busurina, **P.A. Lazarev** / International Journal of Self-Propagating High-Temperature Synthesis. 2022. Vol. 31. No. 2. P. 80-84. DOI: 10.3103/S1061386222020108;
- 10. **Lazarev, P.A.** SHS Pressing of (Ti–Al–Mn)/Ti Metal–Intermetallic Layered Material / P.A. Lazarev, M.L. Busurina, A.N. Gryadunov, A.E. Sytschev, A.F. Belyakova / International Journal of Self-Propagating High-Temperature Synthesis. 2022. Vol. 31. No. 4. P. 163-167. DOI: 10.3103/S1061386222040057;
- 11. **Лазарев, П.А.** Особенности структуры и фазообразования сплава на основе Ti-Al-Si, полученного методом СВС-компактирования / П.А. Лазарев, М.Л. Бусурина, А.Н. Грядунов, А.Е. Сычев, О.Д. Боярченко, А.В. Карпов / Неорганические материалы. 2022. Т. 58. № 9. С. 1039-1044. DOI: 10.31857/S0002337X22090093;
- **Lasarev, P.A.** Structure and Phase Formation of a Ti–Al–Si Based Alloy Prepared by Self-Propagating High-Temperature Synthesis Compaction / P.A. Lasarev, M.L. Busurina, A.N. Gryadunov, A.E. Sytschev, O.D. Boyarchenko, A.V. Karpov / Inorganic Materials. 2022. Vol. 58. No. 9. P. 1005–1010. DOI: 10.1134/S0020168522090096;
- 12. **Лазарев, П.А.** Получение композита Al—Ti—Mg методом самораспространяющегося высокотемпературного синтеза / П.А. Лазарев, А.Е. Сычев, Н.А. Кочетов, Н.В Сачкова / Неорганические материалы. − 2021. − Т. 57. − № 3. − С. 343-348. DOI: 10.31857/S0002337X21030076;
- **Lazarev, P.A.** Preparation of an Al–Ti–Mg Composite by Self-Propagating High-Temperature Synthesis / P.A. Lazarev, A.E. Sychev, N.A. Kochetov, N.V. Sachkova / Inorganic Materials. 2021. Vol. 57. No. 3. P. 324-329. DOI: 10.1134/S0020168521030079;
- 13. **Lazarev P.A.** Lightweight Al–Ti–Mg Alloy by SHS Method / P.A. Lazarev, A.E. Sytschev, N.V. Sachkova, I.D. Kovalev / International Journal of Self-Propagating High-Temperature Synthesis. 2021. Vol. 30. No. 1. P. 55–57. DOI: 10.3103/S1061386221010064;
- 14. **Лазарев, П.А.** Самораспространяющийся высокотемпературный синтез в системе Ti-Al-Si / П.А. Лазарев, А.Е. Сычев, О.Д. Боярченко, А.В. Аборкин / Неорганические материалы. 2021. Т. 57. № 11. С. 1272-1278. DOI: 10.31857/S0002337X21110087;
- **Lazarev, P.A.** Self-Propagating High-Temperature Synthesis in the Ti–Al–Si System / P.A. Lazarev, A.E. Sychev, O.D. Boyarchenko, A.V. Aborkin / Inorganic Materials. 2021. Vol. 57. No. 11. P. 1201-1207. DOI: 10.1134/S002016852111008X;

Патенты

Лазарев П.А., Сычев А.Е. «Способ получения сплава в системе Ti-Al-Si». Патент РФ на изобретение № 2822644 от 11.07.2024 г.