

Направление работ лаборатории РСИ

фундаментальные и прикладные исследования СВС на основе дифракционных методов.

1. Рентгенофазовый и рентгеноструктурный анализ материалов.

- проведение исследований фазового состава материалов, получаемых в условиях СВС;
- структурный анализ новых соединений;
- расчеты методом DFT сложных неорганических соединений, и их термодинамических функций.
- 2. Изучение динамики фазовых и структурных превращений в гетерогенных средах на основе разработанного метода динамической рентгенографии.
 - исследование механизма фазообразования при СВС, непосредственно в волне горения;
 - исследование динамики кристаллизации аморфных веществ;
 - динамика фазового состава материалов в процессе термической обработки.

3. Проведение высокотемпературных рентгенодифракционных исследований.

- оценка температурной стабильности нанокристаллических и аморфных материалов;
- исследование фазовых переходов при нагреве веществ;
- определение коэффициентов термического расширения соединений.

Оборудование лаборатории РСИ

1. Дифрактометры ДРОНЗ с комплексами автоматизации регистрации и управления с трубками Сu, Fe и Mo для решения стандартных задач рентгенофазового анализа - качественный и количественный анализ проб, определение структурных параметров соединений.

2. Комплекс динамической рентгенографии для исследования процессов самораспространяющегося высокотемпературного синтеза. Позволяет проводить in situ регистрацию фазовых превращений материала и эволюцию его кристаллической структуры за время от 100 миллисекунд. Установка включает источник излучения с трубкой типа БСВ, реакционную камеру на гониометрической приставке и позиционный быстродействующий детектор.

3. Дифрактометр ARL X`TRA с детектором Пельтье и высокотемпературной приставкой Anton Paar для решения сложных научно-исследовательских задач. Исследования структуры и фазового состава материалов проводятся интервале температур 25- 2000°C в инертных средах (вакуум, гелий) и на воздухе при 25- 1300°C.

Синтез и кристаллическая структура новой МАХ фазы (Zr_{0.5}Ti_{0.5})₃AlC₂

Методом СВС из порошковой смеси Zr-Ti-Al-C впервые получен материал, содержащий МАХ фазу состава (Zr_{0.5}Ti_{0.5})₃AlC₂

Микроструктура материала

Кристаллографические данные (Zr _{0.5} Ti _{0.5}) ₃ AlC ₂				
(Zr _{0.5} Ti _{0.5}) ₃ AlC ₂				
3.174(2)				
19.08(1)				
166.5(2)				
P6 ₃ /mmc				
5.18				
2.503				
1.996 (2.062)				
3.174				
3.174 (3.174)				
3.098 (3.224)				
2.919 (2.808)				

Определены структурные параметры фазы $(Zr_{0.5}Ti_{0.5})_3AlC_2$. Установлено, что она относится к гексагональной сингонии с пространственной группой P6₃/mmc и является твёрдым раствором с разупорядоченным расположением атомов Ti и Zr в метало-углеродном слое, занимающих в равных долях позиции 2a и 4f. Дифрактограмма продукта

Фрагмент кристаллической структуры ($Zr_{0.5}Ti_{0.5}$)₃AlC₂

D. Yu. Kovalev, M. A. Luginina, S. G. Vadchenko, S. V. Konovalikhin, A. E. Sychev and A. S. Shchukin, Synthesis of a new MAX phase in the Ti–Zr–Al–C system, Mendeleev Commun., 2017, V. 27, P. 59–60.

Синтез и кристаллическая структура нового соединения Mg_{1.42}B₂₅C₄

Синтез Mg_{1.42}B₂₅C₄

Методом CBC с восстановительной стадией получен продукт, состоящий из кристаллитов карбида бора (5-20 мкм) и крупных кристаллов размером до 1 мм цветом от янтарного до черного. Синтез осуществлялся по реакции:

 $2B2O3 + 6Mg + C \rightarrow B4C + 6MgO.$

В шихту вводили окислитель - перхлорат магния, который обеспечивал увеличение температуры горения до 2500°С.

Mg(ClO4)2 + 8Mg = 8MgO + MgCl2 + Q

Особенности структуры $Mg_{1.42}B_{25}C_4$

В структуре Mg_{1.42}B₂₅C₄ обнаружено четыре вида связей между икосаэдрами: B–C(sp3) (**I**), B–C(sp2) (**II**), B– В (**III**) и связь B–B (**IV**). В карбиде бора имеются только связи **I** и **III**.

Кристаллическая структура имеет каналы, параллельные оси *b* элементарной ячейки, в которых располагаются атомы магния не имеющие четкой координации

Параметр	Значение	
а	9.639(1) Å	
b	11.318(1) Å	
С	8.978(1) Å	
β	105.89(3)°	
Cell volume (V)	942.00(5) Å ³	
Space group	P 2 ₁ /b	
X-ray crystal density	2.505	
Absorption coefficient (μ)	0.195 cm ⁻¹	
θ (min)	2.97°	
θ (max)	35.84°	
Reflex number total	4090	
Reflex number $I > 2\sigma(I)$	3326	
Refine number parameters	279	
R factor all	0.0740	
GOF	0.976	

Синтезированы кристаллы нового соединения состава $Mg_{1,42}B_{25}C_4$. Структура кристаллов установлена методом монокристального рентгеноструктурного анализа. Кристаллы $Mg_{1,42}B_{25}C_4$ состоят из икосаэдров состава B_{12} , связанных между собой четырьмя видами ковалентных связей. Это первое соединение, в котором все атомы бора в икосаэдрах занимают кристаллографические независимые позиции, что позволило установить влияние различного вида связей между икосаэдрами на длину связей В-В внутри икосаэдров.

Ponomarev, V.I., Konovalikhin, S.V., Kovalev, I.D., Vershinnikov, V.I., Borovinskaya, I.P. Synthesis and crystal structure of [B12]2[CBC][C2]Mg1.42, a new modification of $B_{25}C_4Mg_{1.42}$. Mendeleev Communications, 2014, vol. 14, pp. 15-16.

Кристаллизация аморфного сплава CuTi, полученного спиннингованием и

высокоэнергетической механической обработкой

Задача. Сопоставление закономерностей кристаллизации аморфного сплава CuTi, полученного методами спиннингования и механического сплавления. Объекты исследования. Аморфная лента сплава TiCu, полученная путем сверхбыстрой закалки расплава и сплав TiCu, полученный ВЭМО. Методика. Регистрация методом динамической рентгенографии изменения структурного и фазового состояния материала при нагреве.

Дифракционная картина при нагреве сплава CuTi

- □ Кристаллизация аморфного сплава TiCu, полученного спиннингованием расплава, протекает при температуре выше 350°С в течение промежутка времени, не превышающего 0.5 с. В момент кристаллизации наблюдается структурный переход, при котором снижается общий фон дифракционной картины и возникают дифракционные линии кристаллической фазы γ-TiCu. Промежуточных кристаллических фаз не наблюдается. Изменение структуры сплава сопровождается экзотермическим тепловым эффектом.
- Кристаллизация сплава с образованием фазы γ-CuTi начинается при нагреве до температуры 250°С и продолжается в течение 20 30 секунд. Переход сплава из аморфного в кристаллическое состояние протекает диффузионным путем и связан с ростом наноразмерных кристаллитов, образовавшихся при активации материала и являющихся зародышами для роста кристаллических зерен фазы CuTi.

Ковалев Д.Ю., Вадченко С.Г., Шкодич Н.Ф., Рувимов С.С., Рогачев А.С., Алымов М.И. Кристаллизация механоактивированного сплава СиТі. Доклады Академии Наук. – 2018. – Т. 478. № 5. – С. 523–527.

Исследование фазовых превращений в сплаве Fe₈₄B₁₆ при нагреве

Задача. Исследование динамики перехода аморфно-кристаллического перехода сплава Fe84B16, полученного разными методами. Объекты исследования. Аморфные сплавы Fe₈₄B₁₆, полученные спиннингованием расплава и ВЭМО. Методика. Регистрация методом динамической рентгенографии изменения структурного и фазового состояния материала при нагреве.

Ковалев Д.Ю., Шкодич Н.Ф., Вадченко С.Г., Рогачев А.С., Аронин А.С. Влияние способа получения на аморфно-кристаллический переход в сплаве $Fe_{84}B_{16}$. Журнал технической физики. 2019. Т. 89. № 12. С. 1903–1909.

Эволюция структуры и фазового состава высокоэнтропийных сплавов FeNiCoCrX (X= Mn,Ti, Al) при нагреве

Задача. Исследование эволюции структуры и фазового состава сплавов FeNiCoCrX (X=Mn,Ti,Al) при нагреве методом высокотемпературной рентгенографии. Объекты исследования. Высокоэнтропийные сплавы FeNiCoCrX (X=Mn,Ti,Al), полученных методом высокоэнергетической механической обработки. Методика. Регистрация изменения структурного и фазового состояния материала при нагреве методом высокотемпературной рентгенографии.

В результате ВЭМО смесей Fe-Ni-Co-Cr-X (X= Mn, Ti, Al) в эквиатомном соотношении получены высокоэнтропийные сплавы на основе твердых растворов замещения с fcc и bcc структурами. Сплавы характеризуются высокой дефектностью структуры и низкой степенью кристалличности.

□Стабильность структуры и фазового состава высокоэнтропийных сплавов FeNiCoCrX (X= Mn, Ti, Al) определяется атомными радиусами элементов Mn, Ti, Al, вводимых в базовый сплав FeNiCoCr. При увеличении атомного радиуса элемента, стабильность при нагреве ВЭС с его добавкой, уменьшается.

A.S. Rogachev, D.Yu. Kovalev, N.A. Kochetov, A.S. Shchukin, S.G. Vadchenko Evolution of crystal structure in high-entropy AlCoCrFeNi alloy: An in situ high-temperature X-ray diffraction study. Journal of Alloys and Compounds 861 (2021) 158562.

Исследование теплового расширения нанокристаллических диборидов переходных металлов методом высокотемпературной рентгенографии

Задача. Определение КТР нанокристаллических соединений.

Объект исследования. Дибориды переходных металлов TiB_2 , ZrB_2 , HfB_2 и VB_2 .

Синтез. Наноразмерные порошки диборидов получены химическим синтезом в ионном расплаве хлористых солей металлов с борогидридами натрия. Методика. Регистрация дифрактограмм при ступенчатом нагреве диборидов методом высокотемпературной рентгенографии.

Дифрактограмма и морфология исходного VB₂

КТР (а·10⁻⁶ К⁻¹) диборидов металлов

Соот		2 ⁽	ad	a	Интервал		
Соеди	α^{α} α^{α} α_{cp}		Соединение		u _{cp}	температур, К	
TiB ₂ ¹	Нано	3.58	9.92	5.69	200 1472		
	Микро	6.79	8.38	7.32	300-1473		
ZrB ₂ ²	Нано	4.6	4.1	4.4	300-1473		
	Микро	7.3	7.9	7.7	500-1475		
HfB ₂ ³	Нано	7.4	9.9	8.2	300-1100		
	Микро	7.4	7.5	7.4	300–1473		
VB2 ⁴	Нано	7.7	8.8	8.1	200 1472	2	
	Микро	7.5	8.1	7.7	300-1473	21	

Эволюция дифрактограмм при нагреве VB₂

¹ D.Yu. Kovalev, N.Yu. Khomenko, S.P. Shilkin Thermal expansion studies of the nanocrystalline titanium diboride, Ceramics International 48 (2022) 872–878.

² D. Yu. Kovalev, S.V. Konovalikhin, G.V. Kalinnikov, et al. Thermal Expansion of Micro- and Nanocrystalline ZrB₂ Powders. Inorganic Materials, 2020, Vol. 56, No.3, pp. 258–264.

³ D.Yu. Kovalev, S.P. Shilkin, S.V. Konovalikhin, et al. Thermal expansion of micro and nanocrystalline HfB₂. High Temperature, 2019, Vol. 57, No. 1, pp. 32–36.

⁴ D.Yu. Kovalev, N.Yu. Khomenko, and S.P. Shilkin HTXRD Study of the Thermal Expansion and Stability of Nanocrystalline VB2. Inorganic Materials, 2019, Vol. 55, No. 11, pp. 25–31.

Синтез Cu_{2-n}Se при CBC порошковой смеси элементов

Задача. Разработка новых термоэлектрических гибридных материалов на основе Cu₂Se. Синтез. Получение фазы Cu_{2-n} Se в области гомогенности методом CBC из порошковой смеси элементов.

Морфология излома образца, полученного при горении смеси 2Cu-Se

Дифрактограммы продукта горения смесей (2-n)Cu+Se

Д. Ю. Ковалев, Г. Р. Нигматуллина, Н. Н. Биккулова Синтез Си_{2-п}Se при автоволновом горении порошковой смеси элементов. Неорганические материалы, 2021, том 57, № 11, с. 1190–1201.